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Abstract

Prior research on AI-assisted human decision-making has explored several different ex-

plainable AI (XAI) approaches. A common approach is to provide AI recommendations

along with uncertainty measures and explanations. However, this approach can lead to

over-reliance on AI, which is a significant concern when the AI is wrong. On the other

hand, under-reliance can occur when the human decision-maker does not trust the AI

when it is correct. Moreover, human decision-makers only have two options: to follow

the AI recommendation or not, in which the latter they often go with their own initial

thought. Therefore, challenges remain in building effective AI-assisted systems that can

reduce reliance on AI and do not limit the control of human decision-makers.

The goal of my PhD research is to develop these systems by explaining the uncer-

tainty and building a more reliable decision-making approach. I begin by proposing a

method for explaining model uncertainty to promote trust and improve end-user un-

derstanding. I then define a new decision-making approach based on the Evaluative AI

framework. Through human-subject experiments, the new approach has shown promise

in reducing over-reliance and allowing users to make better decisions, although there is

a small increase in under-reliance compared to the traditional recommendation-driven

approach. Finally, I demonstrate the application of the new decision-making approach

in supporting skin cancer diagnosis by extending the Weight of Evidence framework to

image datasets. The proposed approach is evaluated by conducting experiments with in-

dividuals experienced in skin cancer diagnosis. The results show that recommendation-

driven and hypothesis-driven approaches have their own advantages and disadvantages,

and suggest future research in combining the strengths of both approaches.
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Chapter 1

Introduction

AI-ASSISTED decision-support systems have become increasingly popular in vari-

ous domains, such as healthcare, finance, and transportation. Machine learn-

ing models are used to provide recommendations to help users make better decisions.

However, these models are often treated as black boxes, making it difficult for users to

understand how the model works and why it makes certain recommendations. Further-

more, another issue is that even if the model can have a very high accuracy, it might use

the wrong features (or evidence) to make the prediction. This is referred to Clever Hans

phenomenon [175] in psychology. Therefore, explainable AI (XAI) has shown promise in

improving trust and understanding in machine learning models. A common XAI ap-

proach is to provide explanations of the model’s predictions, which can help users un-

derstand why the model makes that prediction. Moreover, uncertainty measures can be

provided to indicate the model’s confidence in its predictions. This approach is called

recommendation-driven AI, where the model provides a recommendation and additional

information about that recommendation. Human decision-makers can then decide whether

they should follow the recommendation or not. In recent research, Miller [153] argues

that the recommendation-driven approach has two main issues: (1) by explaining just

the AI recommendation, it limits the user’s control, especially when few alternatives are

offered if the user disagrees with the AI; (2) the recommendation-driven approach does

not align with the cognitive processes of human decision-making. Therefore, challenges

remain in building more effective AI-assisted systems in the future.

First, users may over-rely on the recommendation because of overtrust in the model,

which is problematic when the model is wrong. On the other hand, users may under-

1
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rely on AI recommendations, in which the users do not follow the prediction when it is

correct because of distrust in the model. Importantly, research has shown that providing

explanations does not always reduce over-reliance on AI recommendations, compared

to only providing AI predictions [16, 27]. More troubling is the fact that adding more

information (i.e., adding explanations for the AI recommendation) is not always helpful

and sometimes can lead to worse performance and overconfidence in the wrong infor-

mation [167, 168]. For instance, explanations can result in people viewing the model’s

incorrectness as being correct [103] and people being deceived by incorrect explanations

regardless of their expertise [158]. This suggests that the current explainable AI approach

might not always be effective in helping users make better decisions.

Second, providing recommendations and explanations does not align with the cogni-

tive processes of human decision-making [82, 112, 153, 174]. Specifically, Hoffman et al.

[82] argue that abductive reasoning is an appropriate basis for conceptualising explain-

able AI, as it involves generating hypotheses to explain an event. Moreover, based on

Yates and Potworowski [232]’s definition of cardinal decision issues, Miller [153] identi-

fies six criteria for good decision aid, including: (1) help to identify options, (2) help to

identify possible outcomes for each option, (3) help to judge which outcomes are most

likely, (4) help to identify impacts on stakeholders, (5) help to make trade-offs between

options, and (6) help to understand the machine decision. The current recommendation-

driven approach (i.e., giving AI recommendations and explanations) only satisfies crite-

ria (6).

This thesis aims to build more reliable and trustworthy explainable decision-support

approaches, which are evaluated and applied across various application domains. First,

in the recommendation-driven approach, users are typically provided with AI recom-

mendations and explanations. Most existing research has used uncertainty measures as

a means to improve user trust [222, 239]. However, these approaches do not explain the

model uncertainty, which represents a promising research direction for further improv-

ing users’ trust and understanding in the model [202]. Second, as discussed above, even

when uncertainty and explanations are provided, the recommendation-driven approach

still limits user agency and it does not align with human cognitive processes. Therefore,
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this thesis aims to address two main challenges: (1) Explaining model uncertainty, and (2)

Designing a decision-support model that can calibrate reliance on AI. In summary, this

thesis contributes methods for explaining recommendation uncertainty and designing

decision-support systems that enhance user trust, understanding and decision quality.

1.1 Research Motivations

I summarise the two challenges and research questions of this thesis as follows:

Challenge 1: Model Uncertainty The first challenge is to explain the machine

learning (ML) model’s uncertainty in the recommendation-driven approach, which can

be crucial for building trust and understanding in these models. Specifically, this uncer-

tainty refers to the uncertainty in the ML model’s predictions, which can be caused by

various factors, such as the internal structure of the ML model or uncertainty in the train-

ing data. While recent research has used confidence (uncertainty) measures as a way to

improve trust and understanding in ML models, these approaches [222, 239] do not pro-

vide explicit explanations of their uncertainty. Therefore, I aim to address this challenge

in order to help users understand why the model is confident (or not confident) in its

predictions, and then decide whether they should trust the model’s decisions.

Challenge 2: Decision-Support Model The second challenge is to design a

decision-support model that is promising in helping users make better decisions by ap-

plying the new Evaluative AI paradigm [153]. While we gained valuable insights from the

positive results of explaining uncertainty, we did not believe that pursuing this line of

work would improve human decision-making with AI assistance. The recommendation-

driven approach in Challenge 1 still has limitations in terms of user agency and cognitive

processes as explained above. Therefore, the new paradigm aims to address the issues

of over and under-reliance on decision-support tools by providing evidence for possible

hypotheses and allowing users to make informed decisions based on the evidence. This

paradigm is built on Peirce’s notion of abductive reasoning [174], which is argued to best

reflect the human decision-making process in the context of human-AI interaction [82].

More specifically, abductive reasoning refers to hypothesis-driven approach (as opposed to a
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recommendation-driven approach), which is a form of decision-support that starts with

a hypothesis and then provides evidence that supports or refutes the hypothesis. For

this reason, I aim to address this challenge by proposing a new evidence-based decision-

support approach based on the Evaluative AI paradigm and evaluating its effectiveness

in improving decision quality and reducing over-reliance on AI recommendations.

To address these challenges, this thesis aims to answer the following research ques-

tions. In Chapter 3, I address Challenge 1 by answering questions RQ1 and RQ2.

RQ1. How can we explain model uncertainty?

RQ2. Can explaining model uncertainty improve user trust and understanding in

the machine learning model?

To answer RQ1, I formalise the counterfactual (CF) explanation of confidence score to

explain model uncertainty. Counterfactual explanations are chosen because people tend

to focus more on counterfactuals than factual ones when seeking explanations [32, 150].

Particularly, the CF model provides explanations to change the confidence score of a spe-

cific output class. Then, I address RQ2 by conducting two user studies to evaluate the ef-

fectiveness of this explanation approach. I also compare two different counterfactual ex-

planation approaches, example-based explanation and visualisation-based explanation,

and investigate how users perceive and use these explanations differently.

Subsequently, in Chapter 4, I address Challenge 2 with RQ3.

RQ3. How can we design an effective evidence-based decision-support model?

I address RQ3 by proposing a new decision-support approach called evidence-informed

hypothesis-driven decision-making. This decision-support approach aims to help users make

better decisions by providing evidence for possible hypotheses. Through human be-

havioural experiments, the new approach has been shown to improve decision quality

and reduce over-reliance on AI recommendations. Moreover, using qualitative analysis, I

explore the limitations and challenges of the new approach and compare it with two base-
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line decision-support approaches, namely recommendation-driven and AI-explanation-

only.

I further apply the new decision-support approach to build a decision-aid tool for

supporting skin cancer diagnosis in Chapter 5, called Visual Evaluative AI (VisE). In this

chapter, I respond to RQ4 and RQ5.

RQ4. Based on the new decision-support paradigm, how can we build a decision-

aid tool for image datasets?

RQ5. How do different decision-support approaches impact human decision-

making in skin cancer diagnosis?

For RQ4, I introduce the Visual Evaluative AI tool, which combines concept-based ex-

planations and the weight of evidence (WoE) framework to provide hypothesis-driven

decision-support for image datasets. The original WoE framework has only addressed

tabular data, which is different from image data. Extracting features from images is more

challenging and requires techniques like convolutional neural networks (CNNs). There-

fore, I extend the WoE framework to support image data by combining it with concept-

based explanations. Concept-based explanations will find human-understandable high-

level concepts in the image data, which represent the features of the image. These features

are then put into the WoE framework to generate evidence for possible hypotheses of the

image.

Moreover, I apply this decision-support tool in a case study of skin cancer diagno-

sis, but it can be used in other computer vision domains as well. To address RQ5, I

conduct a user study with participants who have backgrounds in the skin cancer field

to understand how different decision-support interfaces (recommendation-driven and

hypothesis-driven) can impact their decisions differently. Study participants use the tool

to make diagnosis decisions and provide feedback on the tool’s effectiveness through a

semi-structured interview. Based on this study, I aim to measure the effectiveness of the

two decision-support interfaces in terms of decision quality and user experience.
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1.2 Methods

To address the research questions, I use a mixed-methods approach by combining quan-

titative and qualitative methods. The quantitative method includes both computational

and human experiments to measure numerical data such as completion time, model’s

accuracy, users’ performance and users’ satisfaction. The qualitative method includes

interviews and content analysis to understand users’ perceptions and behaviours. It fo-

cuses on analysing non-numerical and textual data to identify codes and themes in the

text.

Regarding the selection of domains, when conducting user studies with laypeople

on crowdsourcing such as Amazon Mechanical Turk (Amazon MTurk) [28] and Prolific1,

the tasks should not require expertise. Moreover, the tasks should not be too easy that

participants can complete them without the decision-aid [213]. Therefore, I choose the

domains of income prediction [143, 217, 228], resignation prediction [99, 199], and housing

price prediction [43, 179] for the user studies in Chapter 3 and 4. These domains are every-

day knowledge and are suitable for participants with different backgrounds. Example

tasks are provided in Appendix A and B.

Domain experts can make decisions very differently from laypeople as they can in-

corporate their prior domain-specific knowledge with the information provided by the

aid. For that reason, I aim to improve the experiment further by involving human ex-

pertise in the decision-making process. Therefore, I choose the skin cancer domain [17,

37, 205] for the user study in Chapter 5. Participants are recruited through professional

networks, who have backgrounds in the skin cancer field (PhD students, postdoctoral

researchers, doctors and melanographers). The study is conducted with both experi-

enced (doctors, melanographers) and inexperienced participants (PhD students, postdoc-

toral researchers) in skin cancer diagnosis to understand how different decision-support

approaches can impact human decision-making differently. Moreover, participants are

asked to provide their opinions on the decision-support tool through a semi-structured

interview. Details of this experiment are included in Appendix C. The results help ex-

plore how participants would use the tool and what they think about the tool.

1https://www.prolific.com
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1.3 Thesis Contributions

In this section, I will summarise the contributions of this thesis. The papers’ notations

(C1, C2, P1, and P2) refer to the notations in Preface.

1. The thesis proposes a method to explain model uncertainty, and therefore, promote

trust and improve end-user understanding. Specifically, I formalise the counterfac-

tual explanation of confidence (uncertainty) score. User studies indicate that providing

counterfactual explanations of confidence scores can help users better understand

and trust the model. Through qualitative analysis, I identify some limitations of the

two explainability approaches (example-based explanation and visualisation-based

explanation). These limitations suggest directions for improving presentations of

counterfactual explanations. This work has resulted in C1 [127].

2. The thesis defines the evidence-informed hypothesis-driven decision-making model based

on the hypothesis-driven approach and the Weight of Evidence (WoE) framework.

I conduct two human behavioural experiments to compare our (1) hypothesis-driven

approach with two baseline decision-making approaches (2) recommendation-driven

and (3) a form of cognitive forcing that provides only AI explanations and with-

holds the AI recommendations. The results indicate that the hypothesis-driven

approach improves decision quality and reduces over-reliance, with an increase

in under-reliance. Our qualitative analysis further identifies some limitations and

challenges in the three approaches and shows that participants used the hypothesis-

driven approach in a materially different way than the recommendation-driven or

AI-explanation-only conditions. This contribution has resulted in C2 [128].

3. The thesis proposes and studies an Visual Evaluative AI tool for image datasets by

combining concept-based explanations and the weight of evidence (WoE) frame-

work. This tool offers hypothesis-driven decision-making by generating evidence

for possible hypotheses of an image. I provide public access to this tool as a Python

package so other researchers can use it. Its application is further demonstrated in

supporting skin cancer diagnosis. Through a user study with experienced partic-

ipants in the skin cancer field, I explore how different decision-making interfaces
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(recommendation-driven and hypothesis-driven) can impact human decision-making

differently. This work has resulted in P1 [130] and P2 [129].

1.4 Thesis Overview

Chapter Title
Research

Questions
Contribution Summaries

1 Introduction Research motivations and thesis
overview

2 Background
Literature review on model
uncertainty, explainability, trust,
decision-making and skin cancer

3
Explaining
the Uncertainty

RQ1, RQ2
Counterfactual explanation of
confidence score

4
Hypothesis-Driven
Decision-Making
Model

RQ3
Evidence-informed
hypothesis-driven decision-making
model

5 Visual Evaluative AI RQ4, RQ5
Evaluative AI tool for image
datasets. Application of this tool in
skin cancer diagnosis

6 Conclusion
Summary of contributions and
future work

Table 1.1: Thesis Overview

Table 1.1 provides an overview of the thesis structure. In Chapter 2, I review the back-

ground and related work on model uncertainty and explainability. Chapter 3 presents the

counterfactual explanation of confidence score to explain model uncertainty. Chapter 4

introduces the evidence-informed hypothesis-driven decision-making model. Chapter 5

demonstrates the Evaluative AI tool for image datasets and its application in skin cancer

diagnosis. Finally, Chapter 6 concludes the thesis and discusses future work.



Chapter 2

Background and Related Work

IN this chapter, I provide an overview of the background and related work that is rel-

evant to this thesis. I review the literature on uncertainty, explanations, trust, AI-

assisted decision-making and skin cancer. Figure 2.1 shows the relationship between the

literature review and the corresponding chapters in this thesis.

Trust XAI

Uncertainty

AI-Assisted
Decision-Making

Skin
Cancer

Hypothesis-Driven
Decision-Making

(Chapter 4)

Explaining
the Uncertainty

(Chapter 3)

Visual Evaluative AI
(Chapter 5)

Figure 2.1: Literature Review and Corresponding Chapters

First, I discuss the literature on uncertainty (Section 2.1), an important concept for un-

derstanding how AI systems can measure and communicate uncertainty in their predic-

tions. Moreover, uncertainty has been used to foster trust and support decision-making.

9
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This review lays the groundwork for Chapter 3, where I explore how uncertainty can be

explained in AI systems.

Next, I examine the literature on explanations (Section 2.2), which is the foundation of

all chapters in this thesis. Various explanation forms are considered, including counter-

factual and contrastive explanations (Chapter 3), example-based explanations (Chapter 3

and 5), feature-based explanations (Chapter 4 and 5) and concept-based explanations

(Chapter 5). The Weight of Evidence (WoE) framework and why we choose to use it in

Chapter 4 and 5 are also discussed in Section 2.2.4. Following this, I delve into the lit-

erature on trust (Section 2.3), which is a key factor in evaluating user acceptance of AI

decision support systems (Chapter 3 and 4).

I then review the literature on AI-assisted decision-making, beginning with human

cognitive processes that form the basis for implementing abductive reasoning in decision

support [82, 153]. Argumentation theory is also discussed as a complementary frame-

work to abductive reasoning, offering an approach to choose the best decision based

on arguments for and against a decision. Subsequently, I review different AI-assisted

decision-making paradigms, which inform the experimental designs in Chapter 4 and 5.

This section concludes with an overview of how XAI has previously been applied in deci-

sion support. Finally, Section 2.5 provides essential background on XAI in support of skin

cancer diagnosis for Chapter 5, in which I evaluate different AI-assisted decision-making

approaches in this context.

2.1 Confidence (Uncertainty) Measures

A common approach to measuring uncertainty in prediction is to use the prediction prob-

ability [21, 49]. To evaluate the uncertainty quality, we need the uncertainty to be cali-

brated [21, 118]. A well-calibrated uncertainty of an output reflects the true probability

of that output. For example, in a calibrated system, if it predicts that an employee will

resign with a probability of 70%, then, in reality, 70% of the time, the employee will leave.

In fact, prediction probabilities are often poorly-calibrated [76, 92] [65, p55], leading to ei-

ther overconfident or underconfident in the prediction. This problem can result in users



2.1 Confidence (Uncertainty) Measures 11

having a false sense of trust in the corresponding uncertainty (or confidence) measures.

Another approach to measure the uncertainty is through uncertainty sampling [132].

This approach queries unlabelled instance x with maximum uncertainty to get human

feedback. There are four types of uncertainty sampling such as: least confidence, margin

of confidence, ratio of confidence and entropy [195, p12],[157, p70]. Formally, assuming a

classification prediction probability is P(y|x) and Y is a set of classes, the uncertainty

measure U(x) can be defined as follows:

• Least confidence is the difference between 100% probability and the highest proba-

bility returned by the model:

U(x) = 1 − max
y∈Y

P(y|x) (2.1)

• Margin of confidence is the difference between the first and second highest probabil-

ities.

U(x) = P(y = y1|x)− P(y = y2|x) (2.2)

where y1 = arg maxy∈Y P(y|x) and y2 = arg maxy∈Y\y1
P(y|x)

• Ratio of confidence is the ratio between the first and second highest probabilities.

U(x) =
P(y = y2|x)
P(y = y1|x)

(2.3)

• Entropy:

U(x) = − ∑
y∈Y

P(y|x) log P(y|x) (2.4)

We will now evaluate the differences among the four measures above [195, p14], [157,

p93]. Least confidence only considers the confidence information of the most likely class.

Thus, it overlooks the information of the remaining classes. Margin of confidence and ratio

of confidence overcome this shortcoming by measuring the margin between the two most

probable classes. However, these two measurements still ignore most information on the

output probability distribution when we have many label classes (more than two classes).

For that reason, entropy is better to find the confidence (or uncertainty) among all classes.
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In a binary classification task, margin of confidence or ratio of confidence is similar to entropy

because they already consider the difference of all classes (i.e., only two classes in this

case).

2.1.1 Types of Uncertainty Measures

Fundamentally, there are two types of uncertainty, (1) aleatoric uncertainty and (2) epis-

temic uncertainty [208]. Aleatoric uncertainty is called indirect uncertainty and comes

from the noise in the data. Epistemic uncertainty is direct uncertainty that stems from

whether we chose the right model that best explains the data. This is also referred to as

model specification uncertainty or architecture uncertainty [21].

In the context of machine learning, uncertainty estimation algorithms can be classified

as (1) intrinsic method and (2) extrinsic method [68]. Intrinsic methods mean the uncertainty

estimation is implicitly provided along with the output predictions. By contrast, extrin-

sic methods are used to provide post-hoc uncertainty estimates or improve the existing

uncertainty estimates. Moreover, uncertainty algorithms can also be categorised based

on the type of machine learning model such as (1) classification (entropy, mutual infor-

mation) and (2) regression (confidence intervals, quantiles) [21].

2.1.2 Uncertainty Communication

Communicating uncertainty is important to build a trustworthy AI system and support

trust calibration for end-users [21, 239]. Uncertainty is often expressed in one (or a com-

bination) of the following ways: visual, numerical or verbal (words) [208]. Choosing the

right format to communicate uncertainty is crucial to ensure that the audience can un-

derstand the uncertainty, and therefore help build a trustworthy system and support

decision-making.

A key issue of using numerical expression is that it might be challenging for people

with low numeracy skills. For example, in some experiments [184], participants rate 2/3

as being smaller than 3/5 (known as ratio bias or denominator neglect). Bhatt et al. [21] also

identify that humans have cognitive biases, which can impede them from understanding
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uncertainty. A kind of cognitive bias is called framing, in which people prefer an option

depending on the context of the information. For example, people would feel less wor-

ried about this statement “about 85% chance of surviving after a surgery” than “about

15% chance of dying after a surgery” even though these two statements mean exactly the

same thing. However, it is important to note that, despite these limitations, numerical

expression is more precise than other forms of expression.

In contrast, visualisation is more attractive and easier to understand the trends and

patterns in the data. While there are not many designs for numerical and verbal format,

there are many ways to visualise uncertainty. Some common uncertainty visualisation

techniques are: error bars, box plots, icon arrays, violin plots, quantile dot plots and hy-

pothetical outcome plots (HOP). Padilla et al. [169] describe different visualisation meth-

ods and explore in depth the advantages and disadvantages of each method using cogni-

tive theories. For instance, icon arrays can address denominator neglect mentioned above.

Besides the obvious advantage of visualisation, a challenge of this format is determinis-

tic construal error (DCE) [95, 191], in which people mistake uncertainty information as

a simpler but wrong interpretation, to reduce cognitive load. For example, people can

incorrectly interpret the error bar as a representation of the maximum and minimum val-

ues. It is worth mentioning that deterministic construal error has only been found with

visualisation, not with other formats.

Since all formats have their own pros and cons, there is no one-size-fits-all uncertainty

communication for all domains. Therefore, it is important to consider the study context

and the audience when choosing the right format to communicate uncertainty.

2.1.3 Uncertainty and Trust

Uncertainty is a complementary form of communicating transparency and therefore can

be an advantage to build trust between stakeholders and systems [6, 21, 188]. Some

concerns are that communicating uncertainty can undermine people’s trust in the facts.

But Van Der Bles et al. [209] showed that communicating uncertainty has a minor effect

on trusting news articles. Furthermore, Zhang et al. [239] found that confidence score

can help people calibrate their trust in the AI system, and know when to trust or not trust
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the AI recommendation. Wang et al. [222] also improved model understanding and trust

by showing feature attribution uncertainty. In this case, they use LIME [185] to express

the feature attribution, which measures how much each feature contributes to the model

prediction. They then show the uncertainty of the feature attribution by using violin

plots.

Some studies have pointed out that the effect of uncertainty communication on trust

is not always positive. Displaying uncertainty might only promote trust in AI recom-

mendations under low cognitive conditions; however, it might decrease trust under high

cognitive load [243]. When combining both model confidence and model accuracy in

human-AI interaction settings [182], model accuracy has more impact on people’s belief

in the model recommendation, as well as their self-reported trust in the model.

2.1.4 Uncertainty and Decision-Making

Uncertainty helps people to better understand the system output and then combine the

prediction output from the system with their own judgment. Therefore, presenting un-

certainty effectively can help improve human decision-making when interacting with

a recommendation system. For example, combining decision aid with uncertainty in-

formation can result in better users’ performance, compared to using the decision aid

alone [96, 161]. A key in developing a successful AI-assisted decision-making system is

to help users know when to trust or distrust the model’s recommendation, and there-

fore, form a correct mental model of the model’s error boundaries [15]. Specifically, in

the medical application, we can have medical professionals intervene when our model is

incorrect. This is called reject option [22, 162].

But showing uncertainty is not always helpful in improving decision-making [222,

239]. Wang et al. [222] suggested that suppressing uncertainty can, in fact, improve

decision-making. In this example, suppressing uncertainty involves minimising the attri-

bution of inputs with high uncertainty, and relocating that attribution to other input fea-

tures. Moreover, it is important to consider whether people can bring their knowledge in

the decision-making process, to recognise the model’s errors [239]. Otherwise, it is chal-

lenging to improve the performance of human-AI interaction overall. Moreover, since
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Figure 2.2: XAI methods classification

there are different types of uncertainty, there is still limited work in empirical studies

about how people use aleatoric versus epistemic uncertainty to better their decision [21].

Besides the model uncertainty, Zhang and Hußmann [240] indicated the focus on out-

put uncertainty instead of the complexity and opaqueness in human-AI interaction. Out-

put uncertainty refers to the user’s uncertainty about the AI system output. Users can

remain uncertain about the model output regardless the model is highly confident in its

prediction or not. The current decision-making approach is to show fully automatically

generated outputs to the end users. They are then responsible for understanding the

reasons behind these outputs, deciding whether they want to reject the decision and up-

dating the algorithm accordingly. Therefore, we need to address the output uncertainty

to truly build human-centred AI systems, instead of algorithm-centred AI systems.

2.2 Explanations

Explanations in human-AI interaction can facilitate understanding, trust [140, 146, 238],

fairness judgement [53] and decision-making [75]. In this section, we will review different

forms of explanations in explainable AI (XAI) and how they are applied and evaluated

in various domains.

XAI methods can be classified based on the complexity of the model, the model-

related method or the scope-related method. First, we can classify explanation (or in-

terpretability) methods into intrinsic (ante-hoc) and post hoc explanations. Intrinsic (ante-

hoc) explanations refer to the models that are simple in their structure and complexity

and therefore easy to interpret (e.g. linear models, decision trees, K-nearest neighbours).
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By contrast, post hoc explanations are applied to analyse a more complex model after its

training [185]. Examples of models that need post hoc explanations are neural networks

and random forests.

Another way to categorise explanation methods is based on model-specific and model-

agnostic. Model-specific explanations are explanation methods limited to a certain model,

while model-agnostic methods are independent of the model. All model-agnostic meth-

ods are post-hoc explanations. Moreover, the explanation can either be global or local.

Local explanations refer to a single prediction [69, 142, 218]. Global explanations explain

the entire model behaviour (e.g. Partial Dependence Plot [62]).

There are four common forms of explanations: (1) counterfactual and contrastive ex-

planations, (2) example-based explanations, (3) feature-based explanations and (4) concept-

based explanations. We will review each of these explanations as follows.

2.2.1 Counterfactual and Contrastive Explanation

Counterfactual Explanation

A counterfactual explanation is described as the possible smallest changes in input values

to change the model prediction to the desired output [218]. It has been increasingly used

in explainable AI (XAI) to facilitate human interaction with the AI model [31, 150, 151];

for example, applied in credit application [72]. Counterfactual explanations are expressed

in the following form: “You were denied a loan because your annual income was $30,000.

If your income had been $45,000, you would have been offered a loan” [218]. To gener-

ate counterfactuals, Wachter et al. [218] suggest finding solutions for the following loss

function.

arg min
x′

max
λ

λ( f (x′)− y′)2 + d(x, x′) (2.5)

where x′ is the counterfactual solution; ( f (x′) − y′)2 presents the distance between the

model’s prediction output of counterfactual input x′ and the desired counterfactual out-

put y′; d(x, x′) is the distance between the original input and the counterfactual input;

and λ is a weight parameter. A high λ means we prefer to find counterfactual point
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x′ that gives output f (x′) close to the desired output y′, a low λ means we aim to find

counterfactual input x′ that is close to the original input x even when the counterfactual

output f (x′) can be far away from the desired output y′. This loss function can be solved

by iteratively increasing λ until a close solution x′ is found. In this model, f (x) would

be the output, such as a denied loan, and y′ would be the desired output – the loan is

granted. The counterfactual x′ would be the properties of a similar customer that would

have received the loan.

A key property of counterfactual explanations is coherence [61, 150], i.e., the counter-

factual explanations should be realistic and consistent with prior beliefs. Russell [189]

proposed a search algorithm to generate counterfactual explanations based on mixed-

integer programming, assuming that input variables can be continuous or discrete val-

ues. They defined a set of linear integer constraints, which is called mixed polytope. These

constraints can be given to Gurobi Optimization [77] and then an optimal solution is

generated. They find the counterfactual point x′ by solving this function.

arg min
x′

||x̂ − x′||1,w (2.6)

where x̂ is the mixed encoding of x; x′ lies on the mixed polytope; ||.||1,w is a weighted

l1 norm with weight w is defined as the inverse median absolute deviation (MAD) [218].

A main drawback of Russell [189]’s model is that it can only be applied to linear classi-

fiers. Mothilal et al. [159] propose another CF search engine by addressing both feasibility

and diversity of the counterfactual explanations, so-called Diverse Counterfactual Explana-

tions (DiCE). They formulate four necessary constraints for counterfactual explanations,

which are: (1) diversity: the counterfactual explanations should be diverse; (2) sparsity:

the counterfactual explanations should require changes in fewer number of features; (3)

proximity: the counterfactual explanations should be closest to the original input; and (4)

user constraints: the counterfactual explanations should satisfy user-defined constraints.

Evaluating Counterfactual Explanation

Keane et al. [102] provided a survey of 100 distinct counterfactual explanation methods
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to determine five key deficits in evaluating counterfactual explanation approach as fol-

lows: (1) neglecting users, (2) lacking plausibility, (3) addressing sparsity, (4) coverage

assessment and (5) comparative testing. First, neglecting human studies is a common

issue when Keane et al. [102] found only 31% of papers have user studies (36 out of 117)

in their survey. More importantly, some of these studies have unreproducible designs.

The second problem is plausibility. The definition of plausible explanations can vary

depending on different techniques. Here we have two types of plausible explanations:

plausibility-as-proximity and plausibility as more-good-features.

• Plausibility-as-proximity: find counterfactual x′ point such that the distance between

the counterfactual point and the fact point x is minimum and f (x′) = y′ where y′

is a new target and f is a classifier function [218]. However, finding the minimum

distance can be problematic. For example, using a low-distance score would not be

enough if the counterfactual explanation is meaningless (e.g. a class of 25.2 students

is very close to a target class of 25 students. However, this comparison violates

common sense as in reality, we never have a class of 25.2 students). Also, distance

metrics (e.g. L1, L2 or others) should be psychologically grounded; that is, people

should find these metrics acceptable. Keane et al. [102] note that there are currently

no user studies that can confirm which distance metric people would prefer the

most.

• Plausibility as more-good-features: determine the number of “good” features that are

needed for the counterfactual explanation. For example, immutable features are not

good features. We can consider actionable and mutable features as “good” features.

Third, a good counterfactual explanation should be sparse; that is, we change the least

number of features to get counterfactuals. Sparsity is important due to human memory

limits and people only care for some reasons instead of all reasons when they ask for

explanations [150]. It is also difficult to find the best number of features that need to be

modified in counterfactuals as it varies in many research. Keane and Smyth [101] se-

lect one or two feature changes as good counterfactuals. Additionally, Warren et al. [226]

propose a psychologically plausible method by prioritising categorical features over con-
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tinuous features to find the best counterfactuals. User studies further show that people

find explanations referring to categorical features easier to understand compared to those

involving continuous features [227].

Fourth, the coverage refers to the guarantee that the counterfactual method will pro-

duce good explanations as a whole. Explanations are considered good if they are psycho-

logically acceptable, which can be measured by many metrics. For instance, some can

use out-of-distribution (OOD) measures to differentiate between valid and invalid CFs.

Formally, the explanatory coverage is defined as follows:

XP Coverage Set(X) = {x′ ∈ X|∃x ∈ X \ {x′}&explains(x, x′)}

XP Coverage(X) = |XP Coverage Set(X)|/|X| (2.7)

where: X is a dataset, x is the test instance, x′ is the counterfactual instance, explains(x, x′)

is psychologically acceptable counterfactual explanations; XP Coverage is the explanatory

coverage, which is the size of the coverage set divided by the size of the dataset.

Fifth, they found that papers on counterfactual explanations lack comparative testing

between different methods. With a set of available measures, they encourage researchers

to use these measures to evaluate their counterfactual explanation methods and make

their code publicly available.

In summary, Keane et al. [102] identified five key deficits in evaluating counterfactual

explanations. They also propose a roadmap and evaluative benchmarks to address these

issues. To benchmark evaluative methods, counterfactual explanations should be evalu-

ated based on the following criteria as mentioned above, including proximity, sparsity and

coverage.

Contrastive Explanation

Miller [150] highlighted an important factor of explanation is that explanations are con-

trastive. That is, they do not address why an event happened but rather why it happened

instead of another event. For example, they do not ask Why A? (factual question) but in-

stead they ask Why A instead of B? (contrastive question). We refer A as the fact and B
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as the foil (or can be called counterfactual). Miller [151] argue that contrastive explana-

tion is important according to researchers in social science because of two reasons: (1)

Contrastive explanation helps identify what people expect to happen when they are sur-

prised; (2) Presenting contrastive explanations is simpler to both explainer and explainee.

The main difference between contrastive explanations and counterfactual explanations is

that contrastive explanations are the differences between the fact and the foil, whereas

counterfactual explanations only address the foil [138, 151].

A challenge of designing contrastive explanations is to find a good foil. In the case of

binary classification which only has two output classes, the foil is easily identified. How-

ever, when we have more than two possible outcomes, we need other methods to find

which options people consider so that we can have a right contrastive explanation [64].

In practice, Lucic et al. [140] proposed Monte Carlo Bounds for Reasonable Predictions to

understand why there are large errors in a model prediction that aims to explain errors in

regression prediction in a sales forecasting problem. This new approach determines (1)

important features (find the reasonable bounds) and (2) directions between each feature

and the output. van der Waa et al. [210] proposed a decision tree trained on generated

data points that belong to the foil (counterfactual) class. Followed by identifying the fact-

leaf in which the data points of the fact class reside. Next, they identified the foil-leaf

which contains the data point of the foil class by choosing the closest leaf to the fact-leaf.

To evaluate this new approach, they applied four classification models (a random forest,

logistic regression, support vector machine and a neural network) on three benchmark

classification tasks to prove the model-agnostic essence. Another example of generating

contrastive explanations for neural networks is by highlighting the pertinent positives

(minimally sufficient presence to justify the prediction) and pertinent negatives (neces-

sary absence to justify the final outcome) [51].

2.2.2 Feature-Based Explanation

Feature-based explanations describe how input features contribute to the model predic-

tion. This explanation assigns a score to each feature to indicate its importance in the

prediction. Some common feature-based explanation methods are Partial Dependence
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Plot (PDP) [62], Individual Conditional Expectation (ICE) [69], Accumulated Local Ef-

fects (ALE) [8], Local Interpretable Model-agnostic Explanations (LIME) [185] and SHap-

ley Additive exPlanations (SHAP) [142].

(a) Partial Dependence Plot (b) Individual Conditional Expectation

Figure 2.3: Feature-based explanations: (a) Partial Dependence Plot (PDP) and (b) Indi-
vidual Conditional Expectation (ICE).

Figure 2.4: Local Interpretable Model-agnostic Explanations (LIME)

The Partial Dependence Plot (PDP [62]) is a global method that shows the relationship

between a set of input features and the model prediction (e.g., Figure 2.3a). To calculate a

PDP, fix the feature(s) of interest at specific values and get the average predictions across

all instances in the dataset. Due to people commonly visualising in two dimensions,

showing a PDP is often limited to only one or two features of interest. Moreover, PDP
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Figure 2.5: SHapley Additive exPlanations (SHAP)

assumes that the features are independent of each other.

The Individual Conditional Expectation (ICE [69]) is a local method that shows the

relationship between a feature and the model prediction for a single instance (e.g., Fig-

ure 2.3b). To calculate Individual Conditional Expectation (ICE), vary the feature of in-

terest for a single instance across a range of values while keeping all other features fixed.

Features are also assumed to be independent of each other. Furthermore, plotting too

many ICE curves for many instances can be overwhelming and difficult to interpret.

The Accumulated Local Effects (ALE [8]) is a global method that aims to address the

shortcomings of PDP. ALE plots also show how features influence the model prediction.

However, they are less computationally expensive than PDP and can handle the case

where features are correlated with each other. Instead of getting the average predictions,

ALE plots are calculated by taking the difference between the predictions at two values

of a given feature.

The Local Interpretable Model-agnostic Explanations (LIME [185]) is a local method

that explains the model prediction by using approximate models (e.g. linear models) to

quantify the importance of features (e.g., Figure 2.4). LIME generates a set of perturbed

instances by changing the input features and then fits a linear model to these instances.

The coefficients of the linear model are used to explain the model prediction locally, but

cannot guarantee to provide a good global explanation.

The SHapley Additive exPlanations (SHAP [142]) is a game-theoretic method that

explains the model prediction by calculating the Shapley values for each feature (e.g.,
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Figure 2.5). The Shapley value is a measure of the feature’s contribution to the model

prediction. SHAP can provide both local and global explanations. However, compared

to LIME, SHAP is more computationally expensive.

2.2.3 Example-Based (Case-Based) Explanation

Figure 2.6: Example-based explanation

Case-based reasoning [116] provides prediction based on similar past cases of the cur-

rent instance. This method can also be called example-based explanation, where we pro-

vide similar examples in the training dataset to explain the model’s behaviour. Figure 2.6

shows an example of how an example-based explanation can be presented. Images are

taken from the CUB dataset [219]. It shows similar images in the training set to explain

the class prediction (e.g., white pelican) of the test image. Example-based explanations

are often used in image data. However, they can also be applied to other types of data,

such as text and tabular data. For example, a doctor can present similar patient cases

to explain the diagnosis of a new patient. Nonetheless, presenting examples for tabular

data can be challenging, particularly when there are significant variations in the high-

dimensional input features across different examples.

Besides providing similar cases, which are found by using nearest-like-neighbour (NLN)

explanations, we can find nearest-unlike-neighbour (NUN) [165] to present case-based ex-

planations. NUNs can also be referred to as counterfactual explanations, in which we

find a minimally different case that has been discussed previously.
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2.2.4 Evidence-Based Explanation

We describe key differences between the Weight of Evidence approach (WoE) and other

feature attribution approaches such as LIME [185] and SHAP [142].

An approach to generate evidence is the Weight of Evidence (WoE) framework [148],

which can be adapted to meet human-centred design principles. Formally, given the

predicted output y for input x, WoE seeks how much evidence input feature xi gives in

favour of (or against) y. WoE is similar to feature importance explanations. However,

the main difference is that Weight of Evidence uses log likelihoods and log odds ratios to

generate explanations, whereas LIME [185] and SHAP [142] find feature importance by

modifying the predictive posterior probability in various ways.

We choose the Weight of Evidence approach (WoE) in Chapter 4 and 5 because WoE

follows human-centred design principles [148], in which explanations should be con-

trastive (i.e., why the model predicted y instead of alternative y′), exhaustive (i.e., justify

on why every alternative y′), compositional (i.e., be able to break down into simple compo-

nents in the prediction), easily-understandable (i.e., understandable components) and parsi-

monious (i.e., only provide most relevant facts). Kumar et al. [121] argue that SHAP [142]

has several human-centred issues, including non-contrastive and non-actionable expla-

nations, and that most people do not have a correct mental model of Shapley values.

LIME [185] does not follow human-centred design principles either. Moreover, LIME [185]

uses a surrogate model to approximate the original one, leading to lower performance

and explanations that do not reflect the original model. SHAP [142] can have a high com-

putational cost due to the need to compute Shapley values for each instance. In contrast,

WoE [148] is a probabilistic approach that does not require a surrogate model and can be

computed more efficiently.

A closely related work to Melis et al. [148] is from Poulin et al. [177]. Poulin et al.

[177] proposed a framework called ExplainD that uses additive evidence. The framework

also measures the weight of evidence using a Naive Bayes classifier along with high-

lighting the negative and positive evidence for a decision. However, the problem being

considered is a binary classification. Furthermore, there is still room for improvement by

conducting experiments to evaluate the framework. Kulesza et al. [119, 120] introduced
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EluciDebug in email classification using Multinomial Naive Bayes classifier (MNB). The

EluciDebug prototype provides an interface that includes important words and the folder

size that both contribute to the email classification. In this example, important words can

be referred to strength of evidence. The folder size which describes the number of instances

in each class can be referred to weight of evidence. Yet the prototype did not specifically

give positive and negative evidence in decision-making situations.

In the literature, there also exist concepts called strength of evidence and weight of evi-

dence. The strength of evidence is defined as the proportion of evidence that favours one

hypothesis, and the weight of evidence is defined as the total number of evidence [122].

Alternatively, the strength of evidence can be understood as the confidence score of

the model, and the weight of evidence can be defined as the sample size being consid-

ered [63]. When assessing the plausibility of a model, which refers to how likely a model

is to be accepted by a user, the strength of evidence positively increases the plausibility;

however, the weight of evidence is often ignored [63]. Moreover, Griffin and Tversky

[74] indicated that overconfidence is when the strength of evidence is high and the weight

of evidence is low. In contrast, underconfidence happens when we have low strength but

strong weight of evidence.

Having more evidence does not always have positive effects on decision-making. Rat-

cliff and Smith [181] proposed stopping rules that can be applied when additional evi-

dence does not change the final decision. More specifically, relative stopping rule refers

to when the balance between hypotheses reaches a threshold, meaning evidence for one

alternative inherently counts against the other. On the other hand, absolute stopping rule

leads to a decision when evidence for a single hypothesis reaches a threshold, with alter-

natives being considered independently.

2.2.5 Concept-Based Explanation

Concept-based techniques are commonly used to explain image data. They provide ex-

planations using human-defined concepts that are related to parts (a group of pixels)

of images [67, 104]. The explanation is visualised as a segmentation of the image that

represents a specific concept. The concept-based model can be classified into two cate-
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gories: (1) supervised concept learning (concepts are labelled on each image in the train-

ing dataset) and (2) unsupervised concept learning (not having concept labels in the train-

ing dataset). Supervised concept learning requires labelled concepts in the training set,

or the concepts can be transferred using another labelled dataset [234]. Unsupervised

learning concept methods do not require the concepts to be labelled during the training

process. This method is helpful when labelling concepts can be laborious, require exper-

tise, or are not always available. Moreover, unsupervised learning can give users more

agency as they can find a new concept that has not been labelled, but is still used by a

machine learning model.

Kim et al. [105] found that study participants mostly preferred part-based explana-

tions, which highlight the areas representing the concept on images, along with concept

scores that indicate how the concept can negatively or positively affect the model predic-

tion (Figure 2.7). Additionally, the score can be represented as a similarity score with the

same concept in another image (Figure 2.9). To quantify the importance of each concept

to the final classification, a popular approach is called testing with CAVs (TCAV) [104].

TCAV uses directional derivatives to measure the sensitivity of the model’s prediction to

a concept. Some examples of how concept-based explanations may look are shown in

Figure 2.7, 2.8 and 2.9. Photos are taken from the CUB dataset [219].

In the following sections, we will review some popular concept-based explanation

methods.

Supervised Concept Learning

Supervised concept methods require labelled concepts in the dataset. This method is

commonly used and often yields good performance. However, it can be expensive to

label the concepts. An example of how the found concepts are being presented to users

is shown in Figure 2.7. These concepts are segmented on the image and labelled as beak

and leg with their corresponding scores. These scores indicate how concepts contribute

to the model prediction.

There are two common approaches for supervised concept methods, depending on

whether the concept labels are available in the training data or not, specifically: (1) The
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Figure 2.7: An example of supervised concept learning.

concept labels are available within the same training data; (2) The training data does not

have concept labels, but the concept labels are available in an external dataset. According

to Poeta et al. [176], the former is called joint concept training and the latter is called concept

instillation.

Joint Concept Training An example of joint concept training is the Concept-Bottleneck

Model (CBM [115]), where a concept bottleneck layer learns concepts from input features.

This model allows concept intervention, in which human users can adjust the concepts and

see how the model prediction changes. Concept Embedding Models (CEM [57]) improve

CBM and overcome the accuracy-vs-interpretability tradeoff in concept-incomplete set-

tings. CEM uses high-dimensional embeddings to represent each concept, and therefore,

obtains state-of-the-art accuracy while requiring fewer concept labels compared to CBM.

Concept Instillation Concept instillation is a method that transfers concepts from an

auxiliary dataset to the training dataset. In this case, a given layer in the neural network

is modified to represent concepts, which can be called the concept embedding layer. This

method is particularly useful because the concept labels are not always available in the

training dataset. For example, Yuksekgonul et al. [234] propose a post-hoc concept bottle-

neck model (PCBM) that can be applied to any neural network without sacrificing model
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performance. This method aims to address the shortcoming of CBM [115] as CBM re-

quires concept annotations in the training set. PCBM learns the concept bank from other

datasets and transfers this information to the unlabelled dataset. PCBM also allows users

to update the global model, which is more efficient than other works that only allow

fixing a specific prediction.

Concept Whitening (CW [41]) method demonstrates how a concept is represented at

a particular layer of the neural network by altering the layer using a mechanism called

concept whitening, which decorrelates and normalises the latent space. The concepts

used in CW can be learned from an external dataset, which is different from the training

dataset used for the classification task. CW layer can help us better understand how

concepts are built over the layers of the neural network. Moreover, it can be applied in

any layer without sacrificing the predictive performance.

Unsupervised Concept Learning

Figure 2.8: An example of unsupervised concept learning (prototype-based explanation).

Unsupervised concept learning methods do not require concept labels in the training

dataset. These methods often present a concept using a set of prototypes that have the

same concept. This is referred to prototype-based explanations. An example is shown in

Figure 2.8. The concept is represented as a set of five prototypes, highlighting the areas

of interest. This concept is not labelled by the model. However, it can be understood

by human users as the concept beak. Moreover, another way to present the concept is by

drawing boxes around the relevant parts on the test image and adding similarity scores
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Figure 2.9: Another way to present prototype-based explanation, different from Fig-
ure 2.8.

compared to other prototypes as shown in Figure 2.9. We will now review some methods

that use unsupervised concept learning as follows.

The Automatic Concept-based Explanations (ACE [67]) method is a global method

that explains a classifier class without human supervision. A set of segments is seg-

mented from a set of images from the same class and their resolutions. Similar segments

are then clustered into concepts. For each concept, its TCAV score [104] is calculated to

determine its importance to the classifier.

The Invertible Concept-based Explanation (ICE [238]) method is built based on ACE

by using a range of matrix factorization methods instead of clustering segmentations

to address the limitations of ACE. ICE applies Non-negative Matrix Factorization (NMF)

for extracting concepts, which offers better interpretability and fidelity compared to those

derived from PCA or K-means clustering.

Yeh et al. [233] introduced concept completeness, which measures how sufficient the

concepts are to predict the model’s outcome. The authors also propose a method for con-

cept discovery to maximise finding complete concepts. The results show the proposed

method can find complete and interpretable concepts, as well as outperform the previous
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methods, including ACE.

2.3 Trust

In this section, we will review the concept of trust, focusing on trust in human-AI interac-

tions. We will start by defining trust. We will also discuss the causes of trust and methods

to evaluate trust.

2.3.1 Definitions of Trust

Trust is a concept that has been studied in various disciplines, including psychology, soci-

ology, economics, and computer science. To define trust, we start to review the definition

of trust in human-human scenarios (interpersonal trust). Then we extend the definition

to trust in human-machine (human-AI) interactions.

Definition 2.1 (Interpersonal trust [147]). Mayer et al. [147] define interpersonal trust as:

“The willingness of a party to be vulnerable to the actions of another party based on the expectation

that the other will perform a particular action important to the trustor, irrespective of the ability

to monitor or control that other party.”

Mayer et al. [147] also proposed a classic model of trust, the ABI (Ability, Benevolence,

Integrity) model, which is widely used in the literature. Ability refers to the trustee’s

skills and competencies, which can decide whether the individual can be trusted to com-

plete tasks in some specific domains. Benevolence means a trustee is believed to act in the

trustor’s best interests, rather than acting solely from self-interested motives. Integrity is

the extent to which the trustee follows a set of principles that are accepted by the trustor.

The above definition is originally considered in the context of human-human trust.

For trust in human-machine interaction, we need to understand some challenges. First,

trust in human-machine interaction lacks intentionality [131]. For example, an individual

may intentionally act in a trustworthy manner to receive affirmation from others. If we

consider the ABI model, machine agents do not have the same ability, benevolence and

integrity as humans. Moreover, Parasuraman and Riley [170] identified flaws in human-
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machine partnership in terms of disuse and misuse, which refer to under-reliance and

over-reliance on automation. Disuse indicates the neglect of the potential of automation.

Misuse refers to when people over-rely on automation which can result in inappropriate

decisions. To address these shortcomings, Lee and See [131] might be the first to propose

a conceptual model of trust in automated systems that can be applied in improving the

design of automation systems to promote appropriate reliance.

Based on the definitions of interpersonal trust, Jacovi et al. [87] define trust in human-

AI scenarios by considering two notions, anticipation and vulnerability. Similar to benev-

olence, anticipation is the degree to which human (trustor) believes that the machine

(trustee) will act in the human’s favour. Vulnerability refers to the presence of risk and

uncertainty in the interaction. They argue that “trust does not exist if human does not

perceive risk”.

Definition 2.2 (Human-AI Trust [87]). Jacovi et al. [87] define human-AI trust as: “If H

(human) perceives that M (AI model) is trustworthy to contract C, and accepts vulnerability to

M’s actions, then H trusts M contractually to C.”

Definition 2.3 (Human-AI Distrust [87]). Jacovi et al. [87] define human-AI distrust as: “If

H (human) perceives that M (AI model) is not trustworthy to contract C, and therefore does not

accept vulnerability to M’s actions, then H distrusts M contractually to C.”

Definition 2.4 (Trustworthy AI [87]). Jacovi et al. [87] define trustworthy AI as: “An AI model

is trustworthy to contract C if it is capable of maintaining the contract.”

Jacovi et al. [87] also clearly separated trust (relate to trustor) and trustworthy (relate

to trustee). If we trust the AI when it is trustworthy, it is warranted trust. Otherwise,

it is unwarranted trust. In addition, if we do not trust the AI when it is trustworthy, it

causes unwarranted distrust. Of course, we should aim to avoid unwarranted trust and

unwarranted distrust, though avoiding unwarranted trust is more important.

Definition 2.5 (Overtrust [131]). “Trust exceeds system capabilities, leading to misuse.”

Definition 2.6 (Distrust [131]). “Trust falls short of system capabilities, leading to disuse.”

Definition 2.7 (Calibrated Trust [131]). “Trust matches system capabilities, leading to appro-

priate use.”
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The concepts of warranted trust and unwarranted trust are quite similar to overtrust

and distrust discussed in [131]. But we believe that the definitions in [87] are more pre-

cise because they consider trust on a case-by-case basis, rather than just comparing the

trustor’s trust with the trustee’s capabilities. In human-machine, or more precisely in this

case, human-AI interaction, does trust simply refer to the belief that the AI will perform

well? A model can have a very high accuracy, but should we rely on it in all cases? Jacovi

et al. [87] argue that the “trust in model correctness” refers to “the patterns that distin-

guish the model’s correct and incorrect cases are available to users”. This means that a

model capable of communicating to users when it is correct is more reliable than one that

only shows high performance on certain datasets without providing such transparency.

This is where Explainable AI (XAI) comes into play.

2.3.2 Causes of Trust

Trustworthiness is not a prerequisite for trust; however, it is a necessary requirement for

warranted trust [87]. But what can cause trust in human-AI interactions? There are two

possible reasons: 1) human’s prior knowledge matches the model output, and 2) evalua-

tion methods, which are referred to intrinsic trust and extrinsic trust [87]. In particular, for

intrinsic trust, if users understand the underlying reasoning of the model and the model

output matches their prior knowledge, they are more likely to trust the model. However,

we should be cautious, as this can cause confirmation bias too. Also, it is not possible

for users to have intrinsic trust if they do not have background knowledge of the do-

main. For extrinsic trust, users trust the model based on the evaluation of the model’s

performance. This can be done by observing the behaviour of the model from a history

of interactions and/or using some evaluation metrics to measure the performance of the

model on a set of test data.

In the next section, we will discuss some methods to evaluate trust, focusing on the

context of explainable AI.
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2.3.3 Trust Evaluation

Trust can be divided into two types: perceived trust (self-reported trust) and demonstrated

trust. To measure self-reported trust, researchers often measure this in a controlled envi-

ronment where human participants conduct surveys and/or interviews based on Likert

Trust Scale [81, 91, 223] to rate participants’ trust on various factors. On the other hand,

demonstrated trust is measured by observing the participants’ behaviour and actions dur-

ing an interaction, often in controlled settings. The most common example is trust game

and otherwise called investment game [19]. This game is an economic experiment that ex-

amines trust and reciprocity between two players. The first player (trustor) is given some

money and must decide how much they want to give to the second player (trustee),

highlighting trust behaviour. The amount sent is multiplied, and the trustee decides how

much they want to return to the trustor, exhibiting the willingness to reciprocate. Trust

game has been further applied in the context of human-agent interactions [80, 216] or

agent-agent interactions [229].

We should acknowledge that there is a distinction between trust and reliance. Scharowski

et al. [192] advocated for a clearer distinction, arguing that trust is an attitude, while re-

liance is a behaviour. More specifically, trust refers to unobservable features, while reliance

is observable. For example, in the context of human-AI interaction, users may rely on the

system in certain cases, but not necessarily form a trusting attitude towards it. More

recent work has highlighted this distinction in conducting their user studies [98, 114].

Miller [152] presented several requirements to evaluate demonstrated trust in human-

AI interaction. First, we need to be able to measure the task performance of participants

when they complete the tasks in the experiment. Second, there must be presence of risk and

penalty to having unwarranted trust (or unwarranted distrust) when doing the tasks. As

mentioned earlier, trust does not exist if there is no risk. However, designing controlled

experiments that have risk is not straightforward as the stakes are often low. Some solu-

tions include having monetary bonuses when participants do the tasks well and design-

ing the experiment as a competitive game to encourage participants to engage. However,

we have to be clear that the stakes in controlled laboratory environments do not reflect

the real-world stakes. Third, participants must have choices in the experiment, meaning
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they can choose to rely on the AI or not. Importantly, Miller [152] proposed an additional

requirement, manipulated trustworthiness, which means we can manipulate the level of

trustworthiness of a chosen technique. This can be achieved by adding random noise or

bias to the selected model to modify its accuracy. For instance, in a within-subject de-

sign, for each condition (i.e., each AI technique), participants experience different agents

with different levels of trustworthiness [84, 85]. In a between-subject design, each con-

dition has only one agent, and participants choose between the agent or do the tasks

themselves.

2.4 AI-Assisted Decision-Making

In this section, we review the literature on human decision-making processes and the role

of AI in supporting decision-making. We first discuss the cognitive processes in human

decision-making, followed by different AI-assisted decision-making paradigms. We then

discuss the application of Explainable AI (XAI) in decision support.

2.4.1 Cognitive Processes in Human Decision-Making

A well-known psychology theory is the dual process theory [97], which suggests that hu-

mans have two different systems for processing information: (1) System 1 is fast, auto-

matic and intuitive; and (2) System 2 is slow, deliberate and more accurate. Aligning with

this theory, there are two different types of decisions that can be made by humans [117]:

(1) reflexive decision and (2) multi-attribute decision. A reflexive decision is a simple

decision made instantly in a short time. It neither involves many attributes in the input

nor demands conscious thoughts. By contrast, a multi-attribute decision is a complicated

decision that involves many attributes and numerous alternatives.

We might think that System 2 (slow) is better than System 1 (fast) in decision-making

and should aim to avoid System 1. However, Miller [153] argues against this view and

suggests that we should use the strengths of both systems in designing decision aids.

Specifically, the Naturalistic Decision Making (NDM) community considered intuition as

prior experience that can be used to make rapid and accurate decisions without having
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to evaluate all options [109, 113]. The value of intuition can be overlooked if we conduct

experiments with laypeople who have no experience in the task and, therefore, fail to

capture the advantages of prior knowledge in decision-making [109].

Then how should we design decision-support systems that can leverage both System 1 and

System 2? Klein et al. [110, 111] examined sensemaking from various psychological per-

spectives, in which sensemaking refers to how people make sense of the world. Klein et al.

[111, 112] presented a theory of sensemaking known as Data/Frame Theory. The data is

the information and observations that we use to reconstruct the frame, which is a general-

isation of a hypothesis. We can question the frame and seek new data to adjust the frame.

This process is iterative and done using both System 1 and System 2. People make their

decisions first by using their prior knowledge (System 1, System 2) and then search for

evidence and make deliberate judgements among plausible options (System 2). Along

the same lines, Hoffman et al. [82] argue that Peirce’s notion of abductive reasoning [174]

best reflects the cognitive processes in the XAI model. Abductive reasoning is the cogni-

tive process when we give hypotheses to explain an occurred event. Therefore, based on

this foundation, we will discuss the idea of Evaluative AI [153] in the next section.

Cognitive Biases in Decision-Making

Cognitive biases, introduced by Tversky and Kahneman [206], represent systematic er-

rors in judgment, affecting how individuals perceive input information. These biases can

lead to inaccurate and irrational decisions in decision-making contexts. Therefore, un-

derstanding the effects of cognitive biases on human-AI decision-making settings, with

a particular focus on the application of XAI techniques, is important.

Tversky and Kahneman [206] outlined several heuristics and biases such as availabil-

ity, representativeness, and anchoring. The availability heuristic refers to the tendency

to rely on the information that is easiest to recall in memory during the evaluation pro-

cess. Representativeness involves evaluating the probability of an event based on how

similar it is to a typical case, rather than measuring the true statistical probability of the

event. Anchoring refers to the reliance on the first piece of information encountered when

making decisions. Tversky and Kahneman [206]’s foundational work has continued to
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inform much of the literature on cognitive biases such as confirmation bias [108, 163],

automation bias [131], framing [207], fixation [112], etc.

The goal of XAI is to enhance the interpretability and transparency of complex AI

models, thereby improving human understanding and trust in AI. Despite the benefits

of XAI, human cognitive biases can still influence the decision-making process. For in-

stance, Bertrand et al. [20] provided a systematic review of the connection between cog-

nitive biases and XAI. They found that cognitive biases can affect or be affected by XAI in

various ways, which were classified into four categories: (1) cognitive biases that affect

how XAI methods are designed (e.g., explanatory heuristics); (2) cognitive biases that

occurred in user studies (e.g., preference for usability over accuracy); (3) cognitive biases

that can be mitigated by XAI (e.g., providing prototypes to mitigate representativeness

bias); and (4) cognitive biases that can be worsened by XAI (e.g., confirmation bias can

lead to over-reliance on the AI). The recommendation-driven approach is an example of

how confirmation bias can lead to over-reliance.

These biases can compromise decision quality even with the help of XAI methods;

therefore, de-biasing strategies are needed to reduce the impact of human cognitive bi-

ases on decision-making. The idea is to provide explanations to not only the AI’s pre-

diction but also other alternative hypotheses, as mentioned in [20, 153]. This approach

refers to hypothesis-driven decision-making, which can help counter automation bias and

fixation by encouraging users to consider evidence of multiple hypotheses. Furthermore,

Rastogi et al. [180] proposed a time-based strategy to address anchoring bias by allocating

time according to AI confidence.

2.4.2 Argumentation Theory

Along with the dual process theory, argumentation theory is another important founda-

tion for designing decision support systems. Argumentation theory deals with construct-

ing arguments and understanding the relationships between them, which have been ap-

plied to support XAI [46, 214].

In early work, Toulmin’s argumentation model [203] consists of six components: (1)

claim, (2) grounds, (3) warrant, (4) backing, (5) rebuttal and (6) qualifier. Specifically, a
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claim is the main conclusion being asserted, while grounds are the evidence used to sup-

port the claim. The warrant is the reasoning that connects the grounds to the claim, and

backing provides additional support for the warrant. A rebuttal is a counter-argument that

challenges the claim, and a qualifier indicates the strength of the claim (e.g., “probably”

or “definitely”). Toulmin’s model is the foundational work in the field of argumentation

theory, and therefore many argumentation frameworks have been built on it. The first

approach is to consider arguments as abstract entities, starting from Dung [56]’s abstract

argumentation (AA) framework. This work defines the attack relation between them, fo-

cusing on determining acceptable arguments that are conflict-free. An extension of this

framework is the bipolar argumentation framework (BAF) [36], which introduces the notion

of support in addition to attack. Secondly, arguments can be represented as structured

entities, which are composed of premises and rules. Some examples of structured ar-

gumentation frameworks are: ABA [24] builds arguments from assumptions and strict

rules, and ASPIC+ [155] constructs arguments from premises, strict and defeasible rules.

In the field of XAI, argumentative frameworks can be used to develop argumentative

explanations. Čyras et al. [46] categorised argumentative explanations into two types:

(1) intrinsic (i.e., models that are inherently argumentative) and (2) post-hoc (i.e., models

that are non-argumentative). For example, Amgoud and Prade [5] used AA to select the

best decision based on the acceptance of arguments for and against each decision. The

AA framework refers to intrinsic explanations. For post-hoc AF-based explanation, ABA

frameworks have been applied to explain decision [236, 241].

2.4.3 AI-Assisted Decision-Making Paradigms

In the literature, there are two workflows that are often used in AI-assisted decision-

making: (1) AI-first decision-making; and (2) human-first decision-making. AI-first work-

flow provides the AI recommendation first and then humans decide if they want to ac-

cept or not the recommendation, whereas human-first decision-making requires humans

to make a provisional decision before they are provided with any AI recommendations.



38 Background and Related Work

AI-first Workflow

In the AI-first decision-making workflow, it has been demonstrated that participants feel

more confident and are also faster in decision-making [60]. These participants also rated

AI as more practical. In terms of limitations, the anchoring effect is reported to occur

more often in the AI-first workflow [27, 60, 180] in which people overly rely on the AI

recommendation (also called over-reliance). The anchoring effect [206] refers to giving

stronger preference to the earlier knowledge rather than doing a full revision and con-

sidering the latest evidence. By contrast, Fogliato et al. [59] did not find any significant

difference in the participants’ performance, which is measured by accuracy between the

two workflows (AI-first and human-first). However, they also found that participants

are 65% more likely to revise their answers in the human-first setting than those in the

AI-first setting.

Human-first Workflow

Human-first decision workflow has been shown to help reduce the over-reliance on er-

roneous AI recommendations [27, 60]. However, experts may interact with decision-

making systems differently from laypeople (crowdworkers). For example, Fogliato et al.

[60], Gaube et al. [66] ran studies with radiologists who were the experts. Their task is to

review patients’ X-ray images. The studies conclude that in human-first workflow with

expert participants, they are less likely to leverage AI advice even though the AI is more

accurate. In fact, this is referred to algorithm aversion [52] or under-reliance.

A human-first approach called cognitive forcing, based on earlier ideas in psychology

for interventions that elicit human thinking at decision-making time [125], has been pro-

posed as a way to improve users’ engagement and also increase their learning when

interacting with the AI [27, 64]. Four cognitive forcing designs have been introduced:

(1) On demand: Participants can only see the AI recommendation when they request it;

(2) Update: Participants first made a decision without seeing the AI recommendation.

Then, they were shown the AI prediction and could update their decision later; (3) Wait:

Participants had to wait for 30 seconds before the AI decision was shown; and (4) Only
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AI explanation: Providing just the AI explanation and no AI recommendation, on the basis

that this may help people process the AI explanation more carefully and therefore, im-

prove their knowledge and make better decisions [64]. Importantly, cognitive forcing has

been shown to reduce over-reliance compared to the standard AI suggestion approach, al-

though that study had a limitation in that the AI prediction was always correct. There are

also some recognised trade-offs of cognitive forcing designs: more time-consuming [64],

and less trust [27].

Evaluative AI (Hypothesis-driven) Paradigm

Miller [153] argues that AI-assisted decision support is on the cusp of a paradigm shift.

This shift is away from the idea of human-first or AI-first, and into a framework he calls

evaluative AI, which is built around the Data/Frame model [112]. The key insight of

evaluative AI is to not necessarily provide a recommendation, and instead to support

the human cognitive decision-making process by providing evidence for or against the

particular hypothesis that a human decision-maker is considering. This would help to

prevent over- and under-reliance, and would help the decision maker to retain their in-

ternal locus on control [198].

2.4.4 Explainable AI (XAI) in Decision Support

Machine Learning (ML) technologies have been used in various domains to support

decision-making. They are used in healthcare application [13, 18, 83, 149], financial in-

vestment [29, 190], law [12], hiring [133], and even in daily-life tasks such as ingredi-

ent detection [94]. There are two methods often used to support decision-making: (1)

using uncertainty or confidence measures [211, 239] and (2) using explanation AI tech-

niques [186].

When users’ epistemic uncertainty increases (i.e., lack of knowledge about the task

increases), prediction rationale (i.e., explaining the link between the inputs and outputs)

can be helpful to aid users learning [93] and boost their confidence [242]. By contrast, only

showing the confidence score and alternative advice may impede users from accepting
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the AI advice as their lack of knowledge about the AI system is high. When people are

not given any explanations, they are more likely to agree with the model confidence [39],

regardless of its correctness. In this section, we will focus on the role of XAI in supporting

decision-making.

Human Decision-Making Reliance on AI Support

There is no straightforward position regarding when humans are well calibrated to accept

AI-generated advice [215]. Overall, study participants appear more likely to accept an

AI’s recommendation when provided with explanations, regardless of the model’s cor-

rectness [16, 30, 86, 212], whereas less detailed explanations can lead to self-reliance [30].

Explanations can increase the accuracy of the human-AI team when the AI is correct,

but decrease it when it is wrong, resulting in over-reliance on the AI’s recommendations.

Arguably, this is because the current explanation forms do not provide details of the un-

derlying rationale of the AI model behaviour [212]. We therefore should be careful when

selecting the explanation type as it can have a significant effect on whether users decide

to rely on them [35, 139]. Moreover, Vasconcelos et al. [213] found that explanations can

reduce over-reliance by increasing the task difficulty, easing the explanation difficulty or

increasing the benefit of task completion via monetary rewards.

Are Current Explanation Approaches Helpful in Decision Making?

Prior research has shown that some explanations are not always helpful in decision-

making tasks. For example, neither contrastive rule-based and example-based expla-

nations improve task performance over a baseline of no explanation [212]. LIME feature

importance explanations [185] along with the AI’s recommendation may not improve

users’ decision-making compared to only providing the AI’s recommendation [3]. Jacobs

et al. [86] suggested that feature-based explanations can exacerbate the issues of incor-

rect recommendations compared to a baseline condition when the explanations are not

given. Additionally, even though a counterfactual explanation is considered to be similar

to humans’ explanations [31], it is shown that counterfactuals may not help trust calibra-
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tion [224], and neither factual nor contrastive counterfactual explanations are appropriate

in case of incorrect predictions [186].

Furthermore, showing predicted classes greatly improves human performance more

than showing only explanations [123]. Human performance can further be improved by

showing predicted classes with suggesting high accuracy. When predicted classes are

shown, explanations and accuracy induce similar human performance accuracy.

In summary, study participants are more likely to accept the AI’s recommendation

when provided with explanations, regardless of the model’s correctness [16, 86, 212].

Therefore, explanations increase the accuracy of the human-AI team when the AI is cor-

rect but decrease it when it is wrong, resulting in over-reliance on the AI’s recommen-

dations. This is due to the fact the current explanation styles do not provide details of

the underlying rationale of the AI model behaviour [212]. We therefore should be care-

ful when selecting the explanation type as it can have a significant effect on whether

users decide to blindly trust them. Simple and informative explanations are important

to help humans easily find false and unreliable reasoning in the explanation [35, 139].

Importantly, explanations should not be persuading in case of incorrect AI recommenda-

tions [16].

Explanations and Cognitive Engagement

Shang et al. [197] found that users do not often look actively for explanations in low-stake

decision-making tasks such as everyday recommendations (e.g. restaurant recommen-

dations). This study also shows that the utility of decisions is a major factor that affects

users’ needs for counterfactual explanations.

To improve users’ engagement and also increase their learning when interacting with

the AI, Gajos and Mamykina [64] suggest that providing just the AI explanation and no

AI recommendation can help people process the AI explanation more carefully and there-

fore, improve their knowledge and make better decisions. This study however has a key

limitation that the AI prediction is always correct. Designing informative explanations in

situations of incorrect AI recommendations remains a challenge.

Interactive interfaces can improve users’ understanding of how the AI algorithm
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works [42] and reduce over-reliance on the AI with cognitive forcing functions [27]. How-

ever, cognitive forcing functions can only improve the performance of human+AI teams

compared to only explanations given in situations when the AI prediction is incorrect.

There are also some trade-offs when designing interactive interfaces, such as more time-

consuming [42] and less trust [27].

Designing Explanations in AI-Assisted Decision Making

It is a myth that having more information can lead to better decision-making [110]. In

fact, having more information can improve performance to a point. But after that point,

more information can cause adverse effects [137]. Additional information can lead to

an increase in people’s confidence in their decisions, while a decrease in their accu-

racy [167, 168]. For example, Poursabzi-Sangdeh et al. [178] argue that showing people a

clear model (i.e., showing model internals that lead to a prediction) impedes them from

detecting the model’s sizable mistakes. Clear models may be detrimental due to informa-

tion overload. They suggested that we should let people make their predictions before

giving them the model’s prediction as it can be helpful for people’s comprehension of

feature values [106]. Moreover, Lim and Dey [135] suggested allowing users to explore

more details on demand rather than providing all the information at once.

Wang and Yin [224] summarised three needed factors of AI explanations: (1) improve

people’s understanding, (2) help people be aware of the AI prediction uncertainty and (3)

help people to calibrate their trust appropriately. They evaluated four different explana-

tions (e.g., feature importance, feature contribution, nearest neighbours and counterfac-

tuals). Interestingly, none of the three mentioned factors is satisfied by these four types of

explanations when people have limited domain expertise. However, in situations where

people have more domain expertise, feature contribution is proved to satisfy the most

in three factors. Additionally, we can consider explanation modality in the design by

combining visualisations with text and audio explanations [187].

In earlier work, Lim et al. [136] showed that answering the why question (i.e., why did

the system do X?) resulted in better understanding and perceived trust than answering

the why not question (i.e., why did the system not do Y?). Lim and Dey [134] found
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that the following intelligibility types are recommended in general circumstances: (1)

answering why as mentioned above; (2) answering how (i.e., how does the system do X?);

(3) certainty (i.e., the system’s confidence in its decisions); (4) control (i.e., how to change

settings or thresholds in the system); and (5) visualisation (i.e., providing visualisation of

the explanations).

In the context of medical settings, Bussone et al. [30] suggested that showing differen-

tial diagnoses is a necessary explanation as it helps users to weigh the positives and nega-

tives of each diagnosis. Along the same lines, Wang et al. [221] proposed a theory-driven

conceptual framework for connecting XAI methods with human reasoning, which was

applied in the medical domain. They suggested that XAI designs should support forward

reasoning by showing input feature values and attributions before hypotheses in order to

avoid confirmation bias. Furthermore, Cai et al. [34] found that clinicians expect from

their AI assistant much like what they do from their colleague, revealing the following

desired properties: (1) its strengths and limitations, particularly in well-known edge cases

that humans often make mistakes; (2) its point-of-view in relation to their views (e.g., the

AI might be more conservative in diagnosis); and (3) its functionality, which is the infor-

mation that the AI has access to and how it uses that information to make a prediction.

Moreover, the AI should easily identify case-by-case recommendation confidence such

that medical doctors can follow a Bayesian-like procedure to make a better decision (i.e.,

they are aware of the performance between them and the AI in the past, and also the

confidence/uncertainty of the AI recommendation for a specific case) [183].

2.4.5 Human and AI Complementary

Zhang et al. [239] argue that a key factor of decision-making systems is to help decision-

makers decide if they should trust or not trust the AI model’s prediction. In other words,

humans can calibrate trust and therefore form a joint decision outcome with the AI model

that leads to improved overall performance than what could be done by only either hu-

mans or AI models. A common assumption is that a human-AI team may outperform

either the human or AI acting independently. However, existing research challenges this

assumption, suggesting that humans interacting with the AI can actually decrease the per-
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formance compared to the AI model working solo [16, 27, 86]. As a result, helping users

to form a mental model of the AI mode’s error boundaries is also more important than

just improving the AI accuracy. For example, Bansal et al. [15] show that improving the

AI accuracy can actually decrease the accuracy in AI-human team performance when the

updates in the AI model violate the user’s mental model.

In line with the idea of defining the human mental model, Chen et al. [39] define three

core concepts to measure understanding in human-AI interaction: task decision boundary,

model decision boundary and model error. Task decision boundary separates all instances

into correct classes and it represents the ground truth. Model decision boundary rep-

resents the AI model prediction which can misclassify some instances. Model error is

instances where the AI model predicts incorrectly. Chen et al. show that humans are

more likely to accept the AI prediction when they do not use human intuitions in the

task prediction. However, in tasks where they can apply their own intuitions, they agree

more with the AI prediction when the model explanations are consistent with their own

intuitions. In addition, Bansal et al. [14] show that when humans are aware of an AI’s

error boundary (i.e. the instances where the AI is correct), humans can accept or decline

the AI’s recommendation; therefore human-AI performance can be optimal. They de-

fine two properties of the AI’s error boundary, parsimony and stochasticity that can affect

humans’ ability when creating their mental model. Parsimony is the complexity of math-

ematical logic that defines all conditions where the AI model gives incorrect predictions.

A non-stochastic error boundary separates strictly between incorrect and correct predic-

tions. Bansal et al. [14] also highlight a property of the task called dimensionality, which

refers to the number of features used in the data set.

The overlap between the human mental model and the model explanation can affect

the human’s confidence (or uncertainty) in the model predictions [220]. In Table 2.1, only

when there is a large overlap does the confidence in the model prediction increase. On the

other hand, when the model explanation is provided but there is a small overlap between

the human’s prior beliefs and the explanation, their confidence in the final prediction

decreases, and the epistemic uncertainty increases. In other words, the human’s prior

beliefs would lead to unwarranted confidence in the explanation evaluations, resulting in
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biased decisions. Moreover, humans trust and rely on the AI more when there is perfect

complementary in expertise (human and AI are good at different tasks) than when the

human and AI have perfect overlap in expertise (both are good at the same task and bad

at the same other task) [237].

Show Explanation Not Show Explanation

Large overlap Increase confidence Decrease confidence (Overlapping
is not applicable)Small overlap Decrease confidence

Table 2.1: Summary of the findings from Wan et al. [220]. Decrease/Increase the confi-
dence in the AI prediction depending on the overlap between the mental model and the
AI explanation.

Besides the human mental model, their confidence and experience with the decision

aid can also affect the decision-making process. Zhang et al. [237] argue that trust calibra-

tion is not needed in human-AI interaction when humans doing tasks in which they are

confident. The human only needs AI recommendations when they have low expertise

about the task. In this case, interactive designs can select the information that humans

want to know on demand (e.g. uncertainty measures, explanations). Moreover, the ex-

perience of interacting with ML models may influence how users want to use the ML

recommendation or not. Jacobs et al. [86] found that clinicians who are more familiar

with ML are less likely to accept the ML recommendation than those who have less expe-

rience with ML.

2.5 Explainable AI (XAI) in Supporting Skin Cancer Diagnosis

We will now review the literature on the role of explainable AI in supporting skin cancer

diagnosis.

Applying AI in supporting skin cancer detection has become more prevalent and po-

tentially improved decision-making accuracy. The sensitivity of dermatologists who cor-

rectly diagnose melanoma rarely exceeds 80%, and general practitioners have a much

lower sensitivity [235]. The examination often depends on the dermatologists’ experi-

ence and can be subjective. In clinical settings, AI is still not widely applied due to the
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lack of trust in the system, but some technologies are used to aid doctors. For exam-

ple, a user study has found that the majority of healthcare practitioners (58%) who are

based mostly in Australia, have used mobile dermatoscopy for lesion monitoring and

record keeping [90]. More research in applying AI in supporting skin cancer diagnosis is

needed to build trust in the system. With the help of AI, we aim to aid dermatologists in

making more accurate diagnoses.

A common task is to apply deep learning to classify between benign and malig-

nant images. For example, Esteva et al. [58] trained a CNN model that has comparable

dermatologist-level competency. Tschandl et al. [205] showed that human-AI collabora-

tion can improve diagnosis accuracy over that of either human-alone or AI. Although AI

can benefit non-expert clinicians, wrong AI recommendations can mislead people who

have different levels of clinical expertise, including experts [205]. Barata et al. [17] used

a reinforcement learning model to incorporate human preferences into the decision-aid

algorithms.

To provide more information than only an AI-recommended diagnosis, XAI has been

applied to explain further the AI’s decision-making process. Explanations need to be

grounded in users’ goals and needs. For instance, XAI can extract meaningful concepts

from the dermatoscopic images [47, 73, 141, 171, 231], which are referred to the concept-

based explanations that have been discussed previously in Section 2.2. Chanda et al. [37]

showed that Grad-CAM [194] can improve trust in the AI system significantly compared

to the system without explanations. The results also found a strong alignment between

the Grad-CAM method and explanations from dermatologists. However, despite im-

proving trust, Grad-CAM did not significantly increase diagnostic accuracy compared to

AI recommendation alone.

Different types of explanations can influence the effectiveness of the decision aid.

Schoonderwoerd et al. [193] investigated different post-hoc local explanations in a con-

trolled environment of child health diagnosis. Clinicians evaluated different interface de-

signs using different types of explanations, including, general information about patients,

evidence that supports or contradicts the diagnosis, contrastive explanations, counterfac-

tual explanations, case-based explanations and the certainty of the diagnosis. The study
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found that the following information elements are rated as highly important: the infor-

mation being used to make the diagnosis by the system, evidence for and against the

diagnosis, certainty level and how to increase the certainty of the diagnosis, and the per-

formance of the system. Moreover, study participants consistently agreed that including

case-based explanations by showing a typical case with the same diagnosis and how that

relates to the current case, would improve their decision-making. Additionally, Tschandl

et al. [205] study different interaction modalities, including: (1) AI-based multiclass prob-

abilities: People see all probabilities of all classes, calculated by the AI; (2) AI-based prob-

ability of malignancy: People only see the probability of malignant diagnosis; (3) AI-based

content-based image retrieval (CBIR): People see a few example of images that have simi-

lar diagnosis, so-called example-based explanations; (4) Crowd-based multiclass probabilities:

The probabilities are collected from human raters for each diagnosis. They found that

AI-based multiclass probabilities outperformed others.





Chapter 3

Explaining the Uncertainty

Displaying confidence scores in human-AI interaction has been shown to help build trust

between humans and AI systems. However, most existing research uses only the confidence score

as a form of communication. As confidence scores are just another model output, users may

want to understand why the algorithm is confident to determine whether to accept the confidence

score. In this chapter, we show that counterfactual explanations of confidence scores help study

participants to better understand and better trust a machine learning model’s prediction. We

present two methods for understanding model confidence using counterfactual explanation: (1)

based on counterfactual examples, and (2) based on visualisation of the counterfactual space. Both

increase understanding and trust for study participants over a baseline of no explanation, but

qualitative results show that they are used quite differently, leading to recommendations of when

to use each one and directions for designing better explanations.

3.1 Introduction

EXPLAINING why an AI model gives a certain prediction can promote trust and un-

derstanding for users, especially for non-expert users. While recent research [222,

239] has used confidence (or uncertainty) measures as a way to improve AI model under-

standing and trust, the area of explaining why the AI model is confident (or not confident)

in its prediction is still underexplored [202].

This chapter is based on the following published paper:
[C1] (AAAI23 Main Track) [127] Thao Le, Tim Miller, Ronal Singh, Liz Sonenberg. “Explaining Model Con-
fidence Using Counterfactuals.” In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 10,
pp. 11856-11864. 2023.

49
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In Machine Learning (ML), the confidence score indicates the chances that the ML

model’s prediction is correct. In other words, it shows how certain the model is in its

prediction, which can be defined as the predicted probability for the best outcome [239].

Another way to define the confidence score is based on uncertainty measures, which can

be calculated using entropy [21] or using uncertainty sampling [132], [157, p93].

In this chapter, we complement prior research by applying a counterfactual (CF) ex-

planation method to generate explanations of the confidence of a predicted output. It is

increasingly accepted that explainability techniques should be built on research in phi-

losophy, psychology and cognitive science [31, 150]. Specifically, we focus on counter-

factual explanations because they align with how humans seek explanations in daily

life [32, 150]. That is, people often ask about counterfactuals rather than factual ones

when they want to understand why an event happened. Moreover, the evaluation pro-

cess of explanation should involve human-subject studies [61, 103, 154, 212]. We, there-

fore, evaluate our explanation to know whether counterfactual explanations can improve

understanding, trust, and user satisfaction in two user studies using existing methods for

assessing understanding, trust and satisfaction. We present the CF explanation using two

designs: (1) providing counterfactual examples (example-based counterfactuals); and (2)

visualising the counterfactual space for each feature and its effect on model confidence

(visualisation-based counterfactuals).

Our contributions are:

• We formalise two approaches for the counterfactual explanation of confidence score:

one using counterfactual examples and one visualising the counterfactual space.

• Through two user studies we demonstrate that showing counterfactual explana-

tions of confidence scores can help users better understand and trust the model.

• Using qualitative analysis, we observe limitations of the two explainability ap-

proaches and suggest directions for improving presentations of counterfactual ex-

planations.
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3.2 Formalising Counterfactual Explanation of Confidence

This section describes two methods for CF explanation: one based on counterfactual ex-

amples [7] and one based on counterfactual visualisation as in Figure 3.1.

3.2.1 Generating Counterfactual Explanation of Confidence

In this section, we show how to generate counterfactual explanations of the confidence

score in data where input variables can take either categorical or continuous values. The

tool is similar to regression counterfactuals; however, we focus on testing the ability to

explain confidence, not regression. The counterfactual model can generate explanations

to either increase or decrease the confidence score of a specific class. For example, when

the AI model predicts that an employee will leave the company with confidence of 70%,

a person may ask: Why is the model 70% confident instead of 40% confident or less?. This

person could ask why the model prediction did not have a lower confidence score when

they were sceptical about the high confidence score. We aim to generate counterfactual

inputs that bring the confidence score to 40% or lower. An example of counterfactual

explanation, in this case, is: “One way you could have got a confidence score of 40% instead

is if Daily Rate had taken the value 400 rather than 300”. Therefore, from this counterfactual

explanation, we know that we can achieve lowering of the confidence in them resigning

from the company by increasing the employee’s daily rate.

We now describe our approach to generate counterfactuals for confidence scores. We

follow [189] in proposing an algorithm to search for counterfactual points of output con-

fidence. Importantly, we modify this approach to find counterfactual points that change

the confidence score but do not change the predicted class.

Formally, given a question: “Why does the model prediction have a confidence score

of U(x) rather than greater than (or less than) T?” where T is a user-defined confidence

threshold, x is the input instance, U(x) is the confidence score of the original prediction,

we want to find the counterfactual explanation of confidence U(x′) generated by data

point x′ such that U(x′) > T or U(x′) < T depending on the question. In case the user

cannot give a threshold T, the default threshold T value is the original confidence score
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U(x) of the prediction. We seek the counterfactual point x′ by solving Equation 3.1:

arg min
x′

(||x − x′||1,w + |U(x′)− T|) (3.1)

such that:

U(x′) > T if T > U(x) (3.2)

U(x′) < T if T < U(x) (3.3)


P(y = k | x′) < D if P(y = k | x) < D

P(y = k | x′) ≥ D if P(y = k | x) ≥ D
(3.4)

where ||.||1,w is a weighted l1 norm with weight w defined as the inverse median

absolute deviation (MAD) [218]; D is the decision boundary that classifies the class.

We apply Equation 3.2 when we want to find counterfactual x′ that increases the

confidence score, and Equation 3.3 for a counterfactual x′ that decreases the confidence

score. Since x and x′ will give the same output prediction as class k but different confi-

dence scores U(x) and U(x′), P(x) and P(x′) must be in the same space according to the

decision boundary, defined as Equation 3.4.

3.2.2 Example-Based Counterfactual Explanation

Given the original instance input shown in column Original Value in Table 3.1, the AI

model predicts that this person has an income of Lower than $50, 000 with a confidence

score of 57.8%. Note that in this example, the user chooses the threshold T = 45%.

A counterfactual input x′ is then searched for such that U(x′) < T. An example of a

counterfactual explanation generated using our method is: “One way you could have got

a confidence score of less than 45% (30.1%) instead is if Occupation had taken value Manager

rather than Service.”

We presented counterfactuals in a table, such as in Table 3.1. We show the details

of a person in column Original Value and the prediction that their income is lower than

$50, 000. When we change the value of feature Occupation as in columns Alternative 1
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Attribute Alternative 1 Alternative 2 Original

Marital status - - Married
Years of education - - 9
Occupation Manager Skilled Service

Specialty
Age - - 63
Any capital gains - - No
Working hours - - 12
per week
Education - - High School

Confidence score 30.1% 42.1% 57.8%

AI prediction Lower than $50,000

Table 3.1: Example-based counterfactual explanation presented in a table. In alternative
columns, notation (-) means the value is unchanged from the original value, we only
highlight the values that changed.

and Alternative 2, the confidence score changes but the prediction is still lower than

$50, 000. From this table, we can find the correlation between the Occupation and the

confidence score; the occupation Service gives the prediction with the highest confidence

score among all three occupations.

3.2.3 Visualisation-Based Counterfactual Explanation

In this section, we propose a method for visualising the counterfactual space of a model

and how this affects the model’s confidence as shown in Figure 3.1 and 3.2. The idea is

to visualise how varying a single feature affects the model’s confidence, relative to the

factual input x. For example, Figure 3.1 shows the visualisation based on Table 3.1 in

the income prediction task. Here we can see the prediction reaches maximum confidence

score at Service occupation. The title of this graph shows the output prediction Lower than

$50, 000 and the feature name Occupation which we used to change the values.

This visualisation technique is based on the idea of Individual Conditional Expecta-

tion (ICE) [69]. ICE is often used to show the effect of a feature value on the predicted

probability of an instance. In our study, we show how changing a feature value can

change the confidence score instead of changing the predicted probability as in the origi-

nal ICE. There are two types of variables in the dataset: (1) categorical variable, and (2)
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Figure 3.1: Counterfactual visualisation: Categorical variable

Control (C) Example-Based (E) Visualisation-Based (V)

Phase 1
Participants are given plain language statement, consent form and demographic
questions (age, gender)

Phase 2 Participants are provided with
Input instances; Input instances; Input instances;
AI model’s predic-
tion class.

AI model’s prediction class; AI model’s prediction class;

Counterfactual examples. Counterfactual visualisation.

Phase 3 Nothing 10-point Explanation Satisfaction rating scale

Phase 4 10-point Trust rating scale

Table 3.2: Summary of participants’ tasks in our three experimental conditions

continuous variable. So we define the ICE for confidence score of a single feature xi of

instance x such that F(xi) = U(xi) for all xi, where:

• xi ∈ D if xi is a categorical value and D is the categorical set

• xi ∈ [cmin, cmin + t, . . . , cmax] if xi is a continuous value; cmin and cmax are the mini-

mum and maximum values of a continuous range and t is a fixed increment.

If we use only a 2-dimensional graph, we can visualise the changes of only one fea-

ture, whereas counterfactual examples can explain how changing multiple features si-

multaneously affect confidence. However, visualising the counterfactual space allows us
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Figure 3.2: Counterfactual visualisation: Continuous variable

to easily identify the lowest and highest confidence values for categorical values and the

trend of continuous values.

3.3 Human-Subject Experiments

Our user experiments test the following hypotheses.

• Hypothesis 1a/b (H1a/b): Example-based/Visualisation-based counterfactual ex-

planations help users better understand the AI model than when they are not given

explanations.

• Hypothesis 2a/b (H2a/b): Example-based/Visualisation-based counterfactual ex-

planations help users better trust the AI model than when they are not given expla-

nations.

It is necessary to test against the baseline of no explanation because providing ex-

planations is not always useful compared to not providing any explanations [16, 123].

We then evaluate the difference between example-based counterfactual explanations and

visualisation-based counterfactual explanations based on hypotheses H3a/b/c. Previous
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research has shown that visual explanations are more effective than textual ones, making

them a powerful learning tool [23].

• Hypothesis 3a/b/c (H3a/b/c): Visualisation-based counterfactual explanations help

users better understand/trust/be satisfied with the AI model than example-based

counterfactual explanations.

To evaluate understanding, i.e., H1a, H1b and H3a, we use task prediction [81, p11].

Participants are given some instances and their task is to decide for which instance the

AI model will predict a higher confidence score. Thus, task prediction helps evaluate the

user’s mental model about their understanding of model confidence.

To evaluate trust, i.e., H2a, H2b and H3b, we use the 10-point Trust rating scale. For

satisfaction, i.e., H3c, we use the 10-point Explanation Satisfaction rating scale. Unlike the

Likert scale used in [81], the 10-point rating scale in our user study is continuous, with a

midpoint of 5.5.

3.3.1 Experimental Design

Dataset

We ran the experiment on two different domains from two different datasets, which are

income prediction domain and HR domain. Both datasets are selected so that experiments

can be conducted on general participants with no requirement of particular expertise.

The data used for the income prediction task is the Adult Dataset published in UCI Ma-

chine Learning Repository [55] that includes 32561 instances and 14 features. This dataset

classifies a person’s income into two classes (below or above $50K) based on personal in-

formation such as marital status, age, and education. In the second domain, we use the

IBM HR Analytics Employee Attrition Performance dataset published in Kaggle [172],

which includes 1470 instances and 34 features. This dataset classifies employee attrition

as yes or no based on some demographic information (job role, daily rate, age, etc.). We

selected the seven most important features for both datasets by applying the Gradient

Boosting Classification model over all data.
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Attribute Employee 1 Employee 2 Employee 3

Marital status Married Married Married
Years of education 15 15 15
Occupation Service Manager Skilled

Specialty
Age 25 25 25
Any capital gains No No No
Working hours 30 30 30
per week
Education Bachelors Bachelors Bachelors

AI model prediction Lower than $50, 000

Table 3.3: Example input instances provided in the question. The question is: “For which
employee the AI model predicts with the highest confidence score?”

Model Implementation

In our experiments, we use logistic regression to calculate the probability of a class, so

P(x) = 1
1+e−y where y = wx is a linear function of point x. We chose logistic regression

because of its simplicity so that we can easily define the confidence score. Moreover, al-

though logistic regression models are considered intrinsically interpretable models [156],

it is still challenging to reason about their behaviour when we want to have a lower (or

higher) confidence score. In future work, our studies can be extended to using counter-

factual tools for more complex models, such as CLUE [7].

We choose margin of confidence, which is the difference between the first and the second

highest probabilities [157, p93] as the formula of confidence score U(x). The higher the

difference between two class probabilities, the more confident the prediction is in the

highest probability class.

Procedure

Before conducting the experiments, we received ethics approval from our institution (ID:

23208). We recruited participants on Amazon Mechanical Turk (Amazon MTurk), a pop-

ular crowd-sourcing platform for human-subject experiments [28]. The experiment was

designed as a Qualtrics survey1 and participants can navigate to the survey through the

1https://www.qualtrics.com/

https://www.qualtrics.com/
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Amazon MTurk interface. We allowed participants 30 minutes to finish the experiment

and paid each participant a minimum of USD $7 for their time, plus a maximum of up to

USD $2 depending on their final performance.

We use a between-subject design such that participants were randomly assigned into

one of three groups: (1) Control (C); (2) Treatment with Example-Based Explanation (E); or (3)

Treatment with Visualisation-Based Explanation (V). For each group, there are four phases

that are described in Table 3.2. The difference between the control group and the treat-

ment group is that in the control group, participants were not given any explanations.

In the task prediction (phase 2), participants in the control group were only shown input

values along with the AI model prediction class as in Table 3.3. In the treatment group,

participants were provided with either example-based explanations (e.g. Table 3.1) or

visualisation-based explanations (e.g. Figure 3.1). The participants each received the

same 10 questions. For each question, they were asked to select an input instance out of 3

instances that the AI model would predict with the highest confidence score. A question

can have either one or two explanations depending on the number of modified attributes

in the question. For instance, the question in Table 3.3 changes only one attribute Occu-

pation so participants were given a single explanation of treatment conditions. An expla-

nation can either present a categorical variable (e.g. Figure 3.1) or a continuous variable (e.g.

Figure 3.2).

We scored each participant using: 1 for a correct answer, -2 for a wrong answer and 0

for selecting “I don’t have enough information to decide”. To imitate high-stake domains,

the loss for a wrong choice is higher than the reward for a correct choice [15, p2433].

They are also asked to briefly explain why they chose that option in a text box, which is

analysed later in the qualitative analysis. The final compensation was calculated based

on the final score — a score of 0 or less than 0 received $7 USD and no bonus. A score

greater than 0 received a bonus of $0.2 for each additional score.

Participants

We recruited a total of 180 participants for two domains, that is 90 participants for each

domain from Amazon MTurk. Then 90 participants were evenly randomly allocated
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into three groups (30 participants in each group). All participants were from the United

States. We only recruited Masters workers, who achieved a high degree of success in their

performance across a large number of Requesters 2. For the income prediction domain, 41

participants were women, 1 was self-specified as non-binary, and 48 were men. Between

them, 4 participants were between Age 18 and 29, 34 were between Age 30 and 39, 27

were between Age 40 and 49, and 25 were over Age 50. For the HR domain, 43 participants

were women, 47 were men. Age-wise, 4 participants were between Age 18 and 19, 37

were between Age 30 and 39, 26 were between Age 40 and 49, and 23 were over Age 50.

We performed power analysis for two independent sample t-tests to determine the

needed sample sizes. We calculate Cohen’s d between the control and treatment group

and obtain the effect size of 0.7 and 0.67 in the income and HR domain. Using a power

of 0.8 and significant alpha of 0.05, we get sample sizes of 26 and 29 in the two domains.

Thus, we determine the sample size needed for a group is 30 and the total number of

samples needed is 90 for one domain.

3.3.2 Results: Summary of Both Domains

In this section, we present the results from our experiment for two domains that used

the income and HR datasets. We tested for data normality by using the Shapiro-Wilks

test and found that our data was not normally distributed. Therefore, we applied the

Mann–Whitney U test, which is a non-parametric test equivalent to the independent sam-

ples t-test to perform pairwise comparisons between two groups. Table 3.4 summarises

our results of testing the seven hypotheses. Figure 3.3 and 3.4 show the results of the two

studies.

The results show that counterfactual explanations of confidence scores help users

understand and trust the AI model more than those who were not given counterfactual

explanations. We conclude that H1a, H1b, H2a and H2b are supported in both studies

(p ≤ 0.005, r > 0.21).

There is no statistically significant difference in improving users’ understanding

between example-based explanations and visualisation-based explanations — H3a is

2https://www.mturk.com/worker/help

https://www.mturk.com/worker/help
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Measure Hypothesis Domain 1 (Income) Domain 2 (HR)

Understanding
H1a (Control vs. Example) ✓(p = 0.005, r = 0.42) ✓(p < 0.001, r = 0.85)
H1b (Control vs. Visualisation) ✓(p < 0.001, r = 0.62) ✓(p < 0.001, r = 0.87)
H3a (Example vs. Visualisation) ×(p = 0.13, r = 0.23) ×(p = 0.86, r = 0.03)

Trust
H2a (Control vs. Example) ✓(p < 0.001, r = 0.21) ✓(p < 0.001, r = 0.34)
H2b (Control vs. Visualisation) ✓(p < 0.001, r = 0.51) ✓(p < 0.001, r = 0.43)
H3b (Example vs. Visualisation) ✓(p < 0.001, r = 0.26) ×(p = 0.10, r = 0.09)

Satisfaction H3c (Example vs. Visualisation) ✓(p < 0.001, r = 0.28) ×(p = 0.06, r = 0.10)

Table 3.4: Summary of hypothesis tests in two domains. ✓ represents the hypothesis is
supported, × represents the hypothesis is rejected. Since we use the Mann-Whitney U
test, we report the effect size r as the rank-biserial correlation.

Figure 3.3: Domain 1 (Income). C = Control; E = Example-Based Explanation; V =
Visualisation-Based Explanation.

Figure 3.4: Domain 2 (HR). C = Control; E = Example-Based Explanation; V = Visualisation-
Based Explanation.

rejected. In domain 1, the difference in the task prediction between the two treatment

groups is larger than that in domain 2. Specifically, the effect size in domain 1 is r = 0.23



3.3 Human-Subject Experiments 61

Code Definition

W-Reversed category
(CAT)

The participant selected the instance that has the lowest confidence
score instead of the highest confidence score among all instances

W-Linear assumption
(CAT)

Assumed the correlation between confidence score and attribute val-
ues was linear when it was not (e.g. the feature was categorical)

W-Small differences
(CAT & CON)

Selected a wrong answer due to small differences in the explanation
and/or the question

W-Reversed correlation
(CON)

Reversed the trend of the explanation of a continuous variable

W-Case-based (CON) Used case-based reasoning when the correlation was linear

D-No correlation (CAT
& CON)

Could not find the trend of the confidence score

D-Different attribute
values (CAT & CON)

Argued that the values of instances in the explanations are not the
same as values in the question

D-Outside range
(CON)

The modified values in the question are beyond the lowest and highest
values in the explanation

C-Correlation-based
(CON)

Found the correlation in the explanation

C-Case-based (CAT) Got the correct answer based on examples in the explanation without
mentioning the correlation

Table 3.5: The codebook for participants’ responses to evaluate how they understand the
provided explanations. CAT, CON mean the code is applied for categorical variables and
continuous variables, respectively. W corresponds to wrong answers. D corresponds to
the “do not have enough information to decide”. C corresponds to correct answers.

(p = 0.13) and in domain 2 is r = 0.03 (p = 0.86).

There are some discrepancies between domains 1 and 2 when comparing example-

based and visualisation-based explanations in terms of trust and satisfaction. In the

first domain, H3b (p < 0.001, r = 0.26) and H3c (p < 0.001, r = 0.28) are supported.

However, in domain 2, H3b (p = 0.1 > 0.05) and H3c (p = 0.06 > 0.05) are both rejected.

We envision the discrepancies between H3b and H3c may be because prior knowledge

of participants could affect them doing the tasks in two different domains. Future work

could test this idea further.

As observing no statistically significant difference between example-based and visualisation-

based explanations, we then used qualitative analysis to find the limits of both designs

and suggest directions to design effective explanations.
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3.3.3 Qualitative Analysis

Income HR

Example Visualisation Example Visualisation

Wrong
Answer

Categorical
Variables

W-Linear assumption 0 (0%) 0 (0%) 39 (95%) 21 (78%)
W-Small difference 5 (28%) 0 (0%) 2 (5%) 2 (7%)
W-Reversed category 13 (72%) 11 (100%) 0 (0%) 4 (15%)

Continuous
Variables

W-Case-based 1 (4%) 0 (0%) 7 (64%) 0 (0%)
W-Small difference 0 (0%) 2 (18%) 0 (0%) 2 (12%)
W-Reversed correlation 23 (96%) 9 (82%) 4 (36%) 14 (88%)

Not
Enough
Informa-
tion

Categorical
Variables

D-Different attribute 6 (100%) 0 8 (80%) 0
values
D-No correlation 0 (0%) 0 2 (20%) 0

Continuous
Variables

D-Outside range 1 (6%) 9 (64%) 2 (13%) 6 (46%)
D-Different attribute 4 (24%) 0 (0%) 3 (19%) 0 (0%)
values
D-No correlation 12 (70%) 5 (36%) 11 (68%) 7 (54%)

Correct
Answer

Categorical
Variables

C-Correlation-based 17 (11%) 20 (11%) 18 (10%) 0 (0%)
C-Case-based 133 (89%) 159 (89%) 157 (90%) 186 (100%)

Continuous
Variables

C-Correlation-based 97 (98%) 118 (100%) 81 (98%) 99 (100%)
C-Case-based 2 (2%) 0 (0%) 2 (2%) 0 (0%)

Table 3.6: Frequencies and Percentages of Codes for Explanations

We perform the thematic analysis [26] from the text written by participants after each

multiple-choice question to know why they selected an option. The text is a response

to “Can you please explain why you selected this option?”. We followed Nowell et al.

[164] who gave a step-by-step approach for doing trustworthy thematic analysis. Three

authors were involved in the qualitative analysis. The first author identified and doc-

umented the themes and the codes. Through multiple discussion meetings, two other

authors critically analysed the codes and verified them. Finally, we decided on the final

codes as in Table 3.5.

Every participant did the same 10 questions so we have 30 (participants) × 10 (ques-

tions) is 300 (texts) for a condition. Given that we have two treatment conditions and two

datasets, we analysed a total of 1,200 texts and each text is assigned to one code or more

than one code depending on the number of explanations in that response.

Each code is classified as one of: (1) a correct answer (C); (2) a wrong answer (W); or

(3) “not enough information” (D). The final analysis includes 1,112 texts after removing
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88 texts due to poor quality. We found the following observations, which suggest future

improvements.

Use text labels instead of numbers to present categorical variables.. A categorical

variable can be shown in numbers or text labels. In Table 3.6, the majority of wrong codes

in the HR domain is W-Linear assumption (78% and 95%) because most explanations using

categorical variables are written in numbers. There were no linear assumption codes in the

income dataset since all explanations used text labels.

When the labels of categorical features indicate ordinal data, visualise counter-

factuals help to reduce the error “linear assumption”, making it easier for people to

interpret the highest or lowest values. According to Table 3.6 (HR dataset), 95% (39)

of wrong responses happened due to linear assumption in the example-based condition;

however, we found only 78% (21) of linear assumption in the visualisation-based condition.

For instance, in a question where the job level is a categorical variable and is not corre-

lated with the confidence score, a participant in the example-based condition mentioned:

“Those with a higher job level had a higher confidence rating”. In contrast, another partici-

pant in the visualisation-based condition could identify the highest confidence value at

job level 2 without mentioning the linear trend: “The AI predicted job level 2 has the highest

chance of staying”.

It is hard for people to interpret the example-based explanations when the differ-

ences between counterfactual outputs and categorical attributes are minimal. Accord-

ing to Table 3.6 (wrong answer, income dataset, categorical variables), we observe 28% (5)

of W-Small difference codes in the example-based condition. For example, in a question

where Manager occupation has the highest confidence score, some participants mistak-

enly selected Skilled Specialty as the highest even though this occupation is the second

highest. In this case, the difference in confidence values between Manager and Skilled

Specialty is only 2% (93% and 91%). This small difference made 5 participants choose a

wrong answer in the example-based condition.

Using visualisation-based explanations makes it easier to understand correlations;

however, many participants were not willing to extrapolate the correlation beyond the

lowest and highest values. In Table 3.6 (Not Enough Information), we have fewer codes
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of D-No correlation in visualisation-based explanations. However, we record a higher

number of codes of D-Outside range in this visualisation condition. This issue suggests

that we should not expect participants to extrapolate the correlation, and all counterfac-

tual points should be shown in the explanations.

Regardless of variables, if the counterfactual examples in the example-based ex-

planations are not the same as the values in the question, many participants argued

that they do not have enough information to decide (D-Different attribute values). For

example, a participant said: “Because the position is different, lab tech versus sales rep, I feel

that even though the AI chose the one with the highest confidence as the one with the lowest daily

rate, I am not sure if the job description would change that confidence level”. In this question,

we provided the example-based explanation for Sales Representative job, but the question

shows instances of Lab Tech job. Even though the daily rate increases linearly in all cases,

some participants did not feel confident to apply this observation when we changed the

instance values in the question. They applied case-based reasoning when interpreting the

example-based explanation of a linear model rather than interpreting the linear correla-

tion in this explanation. That is, they found the closest example in the counterfactual ex-

planation presented and compared that example with the question. Similarly, we found

an overall 8 codes of W-Case-based where participants applied case-based reasoning to

do the task with example-based explanations of continuous values. A participant wrote:

“It really is a tough call but I chose employee 1 because the 400 range has the highest percent-

age of leaving”. In this example, the participant saw that the daily rate of 400 has the

highest confidence of leaving, therefore, they selected the value that is close to 400 rather

than interpreting the linear correlation between the daily rate and the confidence score

(lower daily rate indicates higher confidence of leaving). Specifically, the question has

three daily rate options of 200, 201 and 247, they eventually selected 247 as the final an-

swer, arguing that 247 is closest to 400 in the example-based explanation. In general, it

is clear that participants in the example-based condition used a ‘case-based reason-

ing’ approach to understanding the model. This led participants to overlook the linear

trend between the confidence score and the feature values. This finding suggests that

we should be careful when using example-based explanations to interpret continuous



3.4 Limitations and Future Work 65

variables for models, except for cases when the underlying model is itself a case-based

model. Using graphs to visualise continuous variables can mitigate this issue.

3.4 Limitations and Future Work

We follow the uncertainty sampling approach [132] to calculate the uncertainty. However,

we have not considered calibrated uncertainty [21, 118], which represents the true uncer-

tainty of the output 3. Future work can explore how we can measure and explain the true

uncertainty. Furthermore, the current human experiment was only conducted on a lo-

gistic regression model. Potential future work should consider more complex non-linear

models.

Regarding the explanations, we can explore other XAI methods such as causal infer-

ence [173] to understand how inputs influence model confidence, where it is important to

distinguish between correlation and causation. Moreover, we can extend our model by

generating contrastive explanations based on the current counterfactual approach. We

also acknowledge that the current explanations can be misleading, even though counter-

factual explanations are often considered faithful because they are not post-hoc approx-

imations. Exploring how users respond to incorrect explanations could yield valuable

insights into human-AI interaction under uncertainty.

3.5 Conclusion

This chapter formalises counterfactual explanations of model confidence and studies two

approaches: (1) example-based counterfactuals; and (2) visualisation-based counterfac-

tuals. Through human-subject studies, we show that the counterfactual explanation of

model confidence can help users improve their understanding and trust in the AI model.

Finally, the qualitative analysis suggests directions for designing better counterfactual

explanations.

3mentioned in Section 2.1





Chapter 4

Hypothesis-Driven Decision-Making
Model

Prior research on AI-assisted human decision-making has explored several different explain-

able AI (XAI) approaches. A recent paper has proposed a paradigm shift calling for hypothesis-

driven XAI through a conceptual framework called evaluative AI that gives people evidence that

supports or refutes hypotheses without necessarily giving a decision-aid recommendation. In this

chapter, we describe and evaluate an approach for hypothesis-driven XAI based on the Weight of

Evidence (WoE) framework, which generates both positive and negative evidence for a given hy-

pothesis. Through human behavioural experiments, we show that our hypothesis-driven approach

increases decision accuracy and reduces reliance compared to a recommendation-driven approach

and an AI-explanation-only baseline, but with a small increase in under-reliance compared to the

recommendation-driven approach. Further, we show that participants used our hypothesis-driven

approach in a materially different way to the two baselines.

4.1 Introduction

RESEARCH has shown that AI recommendations, even when accompanied with ex-

planations, are not always helpful in supporting decision-making [16, 27, 64, 225].

The direct causes of this are under-reliance and over-reliance [215]. With under-reliance,

This chapter is based on the following published paper:
[C2] (ECAI24 Main Track) [128] Thao Le, Tim Miller, Liz Sonenberg, Ronal Singh. “Towards the New XAI:
A Hypothesis-Driven Approach to Decision Support Using Evidence”. In In 27th European Conference on
Artificial Intelligence, vol. 392, pp. 850-857. 2024.

67



68 Hypothesis-Driven Decision-Making Model

decision-makers reject AI recommendations, even when they may be correct. Alterna-

tively, decision-makers may overly rely on AI recommendations, hence be led to errors

when the AI is incorrect. In either case, they tend to fixate on a particular hypothesis

without sufficiently considering others [153]. Approaches such as cognitive forcing, based

on ideas from human psychology, have been proposed to address limitations of the AI

recommendation approach [27], with recent work indicating that withholding AI model

the recommendations, at least for a short time, while still providing the user with an ex-

planation of that recommendation, can be helpful [64]. Recently, Miller [153] proposed a

so-called hypothesis-driven decision-making paradigm called evaluative AI. The main

aim of this paradigm is to focus the decision loop on the human decision-maker, provid-

ing them with the right evidence to support their own intuitions, rather than focusing

the decision loop on machine recommendations. This paradigm offers a promising direc-

tion in building better decision support in explainable AI (XAI) research by focusing on

human decision-makers considering multiple possible hypotheses.

In this chapter, we describe and evaluate an approach for building a hypothesis-

driven decision-making model that uses the Weight of Evidence (WoE) framework [148]. To

the best of our knowledge, this is the first work that compares empirically and in a con-

trolled manner the hypothesis-driven approach [153] with two other popular decision-

making approaches (recommendation-driven and AI-explanation-only [64]). Our contri-

butions are:

• The Evidence-Informed Hypothesis-Driven Decision-Making model, building on the

Weight of Evidence (WoE) framework to the hypothesis-driven approach;

• Two human behavioural experiments comparing our hypothesis-driven approach

with two common decision-aid approaches: (1) the standard model recommenda-

tion with explanation; and (2) a form of cognitive forcing that provides only AI ex-

planations [64]. The results show that the hypothesis-driven approach improves de-

cision accuracy and reduces over-reliance compared to standard recommendation-

driven approaches, at the cost of a slight increase in under-reliance. Furthermore,

the hypothesis-driven approach reduces under-reliance significantly compared to

the AI-explanation-only approach. Our qualitative analysis identifies some limita-
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tions and challenges in the three approaches and shows that participants used the

hypothesis-driven approach in a materially different way than the recommendation-

driven or AI-explanation-only conditions, with participants focusing more on the

evidence than on their own background knowledge.

4.2 Methodology: Weight of Evidence (WoE)

We define the evidence-informed hypothesis-driven decision-making model by implementing

the evaluative AI (hypothesis-driven) paradigm [153] using the WoE model. Specifically,

given a classification problem, decision-makers explore evidence for and against each

hypothesis (i.e. an output class). We allow decision-makers to interact with the model by

repeatedly selecting a hypothesis for which they can then see the positive (or negative)

evidence.

In a classification problem, a hypothesis h ∈ Y, where Y is a set of possible hypothe-

ses. Then, Y−h = Y \ {h} refers to all hypotheses other than h. For example, if a doctor

asserts a set of hypotheses Y = {h1, h2, h3} where h1 = the patient has Covid, h2 = the patient

has Influenza and h3 = the patient has pneumonia, then Y−h1 = the patient does not have Covid

which includes all possible hypotheses except having Covid, that is Y−h1 = {h2, h3}.

We generate the weight of evidence for possible hypotheses by applying the Weight

of Evidence (WoE) framework, which is a probabilistic approach for analysing variable

importance, introduced in the context of explainability by Melis et al. [148] building on

the approach of Good [70]. It provides a quantitative response to the question of why

a model predicted output h for a particular input X in terms of how much each input

feature xi provides in favour of, or against, h, relative to alternatives. Through Bayes

rule, WoE can be understood as an adjustment to the prior log odds caused by observing

the evidence.

For hypothesis h and input feature xi, weight of evidence, woe, is defined as follows:

woe(h | xi) = log
P(xi | h)

P(xi | Y−h)
= log P(xi | h)− log P(xi | Y−h) (4.1)

where log P(xi | h) is the Gaussian log density for hypothesis h.
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Based on the weight of evidence, we say the evidence supports or refutes a hypothe-

sis:

• If woe(h | xi) > 0, evidence xi supports hypothesis h

• If woe(h | xi) < 0, evidence xi refutes hypothesis h

• If woe(h | xi) = 0, evidence xi neither supports or refutes hypothesis h

Considering the vector input X = [x1, x2, . . . , xn], the features can be independent

or dependent on each other. We can apply Gaussian log density for both independent

and dependent variables, depending on how we handle the covariance matrix Σ. The

covariance matrix measures the relationship between two variables, indicating the di-

rection (positive or negative) of how much each pair of features changes together and

the strength of their relationship. For independent variables, the covariance matrix is

diagonal, while for dependent variables, the covariance matrix is full.

Independent Variables For independent variables, the Gaussian log density is based

on a univariate Gaussian distribution, which can be simplified as follows:

P(xi|h) = N (xi; µi|h, σ2
i|h) =

1√
2πσ2

i|h

exp

(
−
(xi − µi|h)

2

2σ2
i|h

)

log P(xi|h) = −1
2

log(2π)− 1
2

log(σ2
i|h)−

(xi − µi|h)
2

2σ2
i|h

(4.2)

where µi,h is the mean of xi for hypothesis h, and σ2
i,h is the variance of xi for hypothesis

h.

Dependent Variables For dependent variables, the Gaussian log density is based on a

multivariate Gaussian distribution. In this case, we compute the conditional distribution

of xi given the remaining features X−i and the hypothesis h. We denote −i as the set of

features excluding the feature i. We calculate conditional mean, conditional variance and

Gaussian log density as follows.
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µi|−i,h = µi|h + Σi,−i|hΣ−1
−i,−i|h(X−i − µ−i|h)

σ2
i|−i,h = Σi,i|h − Σi,−i|hΣ−1

−i,−i|hΣ−i,i|h

P(xi|X−i, h) = N (xi; µi|−i,h, σ2
i|−i,h) =

1√
2πσ2

i|−i,h

exp

(
−
(xi − µi|−i,h)

2

2σ2
i|−i,h

)

log P(xi|X−i, h) = −1
2

log(2π)− 1
2

log(σ2
i|−i,h)−

(xi − µi|−i,h)
2

2σ2
i|−i,h

(4.3)

Subset of features When we consider a subset of features S for hypothesis h, we can

calculate the conditional distribution of XS given the remaining features X−S and the hy-

pothesis h. We denote −S as the set of features excluding S. We calculate the conditional

mean, conditional variance matrix and Gaussian log density as follows.

µS|−S,h = µS|h + ΣS,−S|hΣ−1
−S,−S|h(X−S|h − µ−S|h)

ΣS|−S,h = ΣS,S|h − ΣS,−S|hΣ−1
−S,−S|hΣ−S,S|h

log P(xS|x−S, y) = −|S|
2

log(2π)− 1
2

log |ΣS|x−S,y| −
1
2
(xS − µS|x−S,y)

⊤Σ−1
S|x−S,y(xS − µS|x−S,y)

(4.4)

Mixture model To compute P(xi|Y−h), we sum over all possible hypotheses h′ ∈ Y−h:

P(xi|Y−h) = ∑
k∈Y\{h}

P(xi|k)P(k) (4.5)

How decision-aid models can use WoE to make a decision

Using the weight of evidence for each feature xi as in Equation 4.1, a decision-aid model

can make a prediction based on the total weight of evidence of a hypothesis h by sum-

ming up the weight of evidence of this hypothesis based on each feature xi. The total
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weight of evidence is defined as follows.

woe(h) =
n

∑
i=1

woe(h | xi) (4.6)

where n is the number of features.

The decision-aid model will select the best hypothesis based on the maximum pos-

terior, that is, y = arg maxh∈Y P(h | X). If we have the same prior for all hypotheses,

we can also use the total weight of evidence as another way to find the best hypothesis

using Equation 4.1. Therefore, a decision-aid model can select the hypothesis with the

maximum total weight of evidence as its prediction as follows (only apply to uniform

priors).

y = arg max
h∈Y

woe(h) (4.7)

How WoE can incorporate a human approach to making a decision

To assist users with interpretability, Melis et al. [148] complement the display of the mag-

nitude of the weight of the evidence with a notion of the significance level of the evidence,

using a scale of seven categories: decisive-against (---), strong-against (--), substantial-against

(-), not-significant (N), substantial-in-favour (+), strong-in-favour (++), decisive-in-favour (+++).

The details can be found in the rule-of-thumb guidelines here [4].

In addition to the weight of evidence of a feature, we suggest it is useful to distinguish

the importance of a feature – with importance being domain-specific and determined by

the domain expert using the model. Specifically, if a feature has a significant weight of

evidence according to the WoE model, but that feature is not seen as important by the

human decision-maker, then it is reasonable to anticipate the impact of that evidence on

the decision would be reduced by the decision maker. For example, if a clinician looks at

a dermatoscopic image and also is aware of some irrelevant but high weight of evidence

features such as dense hair, they should ignore that evidence in making a prediction.

Formally, by considering the importance of the evidence, we re-define the total weight
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of evidence from a human decision-making perspective as follows:

woe(h) =
n

∑
i=1

γi × woe(h | xi) (4.8)

where γi is a parameter of feature xi that adjusts the weight of evidence based on

importance, i.e., γi > γj represents that feature xi is more important than feature xj. γ

can be considered as the prior belief of the human decision-maker.

Then, for the skin cancer example just mentioned, in effect in Equation 4.8, the clini-

cian has set γ = 0 for that feature.

4.3 Human Experiment Design

In this section, we describe the task implemented in the human behaviour experiment

and the experiment design.

In selecting a decision-making task, we identified requirements similar to those used

in other studies of how explanations can assist human decision-makers interacting with

AI decision support, e.g. Vasconcelos et al. [213]: the task should not be too easy for

humans to complete without a decision aid, but also, as we were using lay subjects from

Prolific for this particular study, the task cannot require specialist knowledge.

We chose a version of the housing price prediction task studied previously in an XAI

context [1, 44]. In this task, participants are provided with information about house fea-

tures and other information which varies by experimental condition and are asked to

choose whether the given house would have a sale price of low, medium or high. As noted

by others [44], real estate evaluation is a domain where ML models have been developed

to help people make better decisions, predicting house prices is a task that lay people

may need to do in real life, so it is not unrealistic to expect they have sufficient day-to-

day knowledge to make predictions and decide whether or not to rely on an AI model.

Experimenting with this task, we compared the hypothesis-driven approach with two

state-of-the-art decision-making approaches using quantitative measures for efficiency,

performance and reliance and qualitative analysis of information use. In the terminology of

a recent review of XAI evaluation [124], the first two points of comparison are a form of
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evaluation with respect to the decision task, and the latter two focus on users’ perception

and use of the AI system itself. Since we aim to measure whether the hypothesis-driven

approach improves human decision-making, including reducing over- or under-reliance,

this cannot be done without conducting human behaviour experiments.

4.3.1 Dataset and Model Implementation

To build our model, we used the Ames Housing Dataset [48] and the open source code

on GitHub [201] for data pre-processing. The data after pre-processing has a total of

2616 instances and 28 features. We processed the dataset further by converting the house

price into three output classes (low price, medium price and high price). We also balanced

the dataset to ensure that the three classes had the same number of instances by using

Near-Miss Undersampling. Finally, we had a total of 1920 instances with 640 instances

for each class.

We selected six features for the human experiment in the house-price decision-making

task by applying a Gradient Boosting Classification model over the data. Considering

domain-specific decision-making about house prices, we propose there to be three im-

portant features (quality of construction, house age and location) and three unimportant fea-

tures (fireplaces, kitchen quality and central air conditioning). We divided the dataset into

80% for the training set and 20% for the test set. Following Melis et al. [148], we use a

Gaussian Naı̈ve Bayes (GNB) classifier to obtain P(xi | h). This assumes that features are

independent, but the model and implementation work for any probabilistic classifier. We

chose this model because it is a simple discriminative classifier that aligns with previous

work on evidence-based explanations [120, 177].

4.3.2 Experimental Conditions

All participants1 were given the six house feature values plus other information, which

varied by condition as set out below. Participants then chose whether the given house

would have a price of low, medium or high. Using a between-subject design, participants

1We received ethics approval from our institution before conducting the human experiment (ID: 23208).
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were randomly assigned to one of three conditions:

• (C1) Recommendation-driven: Participants see the AI prediction (i.e., either low or

medium or high) and also the weight of evidence for that prediction;

• (C2) AI-explanation-only: Participants see the weight of evidence associated with the

AI prediction, but the AI prediction itself is hidden;

• (C3) Hypothesis-driven: Participants see the weight of evidence for all hypotheses

(low, medium and high), but the AI prediction itself is hidden.

Although participants in the AI-explanation-only and hypothesis-driven conditions did

not see a recommendation, it was expected that the displayed information from the WoE

framework would provide insight that participants could use to support their decision-

making. We note a similar AI-explanation-only approach has been explored previously [64].

4.3.3 Research Questions and Hypotheses

Our overarching research questions were as follows:

• RQ1: (Efficiency) What form of AI assistance helps participants make faster deci-

sions?

• RQ2: (Performance) What form of AI assistance helps participants make better deci-

sions?

• RQ3: (Reliance) What form of AI assistance helps reduce over-reliance and under-

reliance?

• RQ4: (Information use) How do people make decisions differently in recommendation-

driven, AI-explanation-only and hypothesis-driven approach?

For RQ1, we evaluated the participants’ speed in making a decision. We use the most

common metric - completion time to measure the time taken on the task. The correspond-

ing hypotheses for this question are:
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• H1a/b: (C3) Hypothesis-driven approach will cost less time to finish the task than

(C1) Recommendation-driven and (C2) AI-explanation-only.

For RQ2, we evaluated the quality of the decision. In the task, we asked the partici-

pants to assign the likelihood for each price range (low/medium/high) where 100 is the

most likely and 0 is the least likely. The sum of three likelihoods must be equal to 100.

We expect the participants to be confident when they make a correct prediction, and not

be confident when they make a wrong decision. We apply Brier score as explained below to

measure the task performance. The hypotheses for this question are:

• H2a/b: (C3) Hypothesis-driven approach will help participants make better decisions

than (C1) Recommendation-driven and (C2) AI-explanation-only.

For RQ3, we investigated the participants’ capability of appropriately calibrating

their decision. Participants should follow the model’s prediction when it is correct and

should not use the model’s prediction when it is wrong. We applied two measures over-

reliance and under-reliance as shown below with the following hypotheses:

• H3a: (C3) Hypothesis-driven can reduce over-reliance compared to (C1) Recommendation-

driven.

• H3b: (C3) Hypothesis-driven can reduce under-reliance compared to (C2) AI-explanation-

only.

For RQ4, we looked into the text written by participants when they explained why

they selected an option after each question to know how they used the provided infor-

mation in each decision-making approach to make their decisions. Therefore, we can

identify the limitations of each approach and the generated evidence that led the partici-

pants to make a wrong decision.

4.3.4 Measures

We took the following measures:

1. Task Efficiency (Completion time): The time participants take to complete each task.
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2. Task Performance (Brier score): This metric quantifies the effectiveness of task per-

formance in terms of accurate decision outcomes. The formula is:

BSp =
1
N

N

∑
i=1

(Cp,i − Ap,i)
2 (4.9)

where: Cp,i is the likelihood level of a participant p in question i, ranging from 0

to 1 (the likelihood level of a participant refers to how confident they are when

answering the question); Ap,i is the answer score of participant p in question i, ei-

ther 0 (wrong answer) or 1 (right answer); N is the number of questions for each

participant. The best Brier score (i.e. equal to 0) for an individual task is when a

participant answers the task correctly and gives it a 100% likelihood (or alterna-

tively, a wrong answer but with 0% likelihood). Therefore, a participant has better

task performance when they have a lower Brier score. The Brier score measures de-

cision accuracy but awards a higher score for a correct answer when a participant

is confident, and a lower penalty for an incorrect answer when not confident. This

mitigates problems where participants guess answers (i.e. have low confidence in

their answers). Brier score has potential for real-world applications, as it accounts

for both the correctness of a decision and the confidence of the decision-maker.

We then measure the over-reliance and under-reliance [225]. Since study participants

can only see the AI recommendation in C1 (Recommendation-driven), we measure agree-

ment: whether participants have the same prediction or differ from the model’s predic-

tion in the other two conditions.

3. Over-reliance: the fraction of tasks where participants have the same decision as a

model’s prediction when it was wrong: Σi(Ap,i = Mi = 0)/Σi(1 − Mi), where Ap,i

is as above and Mi = 1 if the model is correct and 0 otherwise.

4. Under-reliance: the fraction of tasks where participants have a different decision

from a model’s prediction when it was correct: Σi(Ap,i ̸= Mi = 1)/Σi Mi.
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4.3.5 Conduct

We conducted two separate human experiments in which participants were given the

same task in the form of a question set, with the only difference being the way they

answered the question.

In experiment 1, participants were asked to make a decision about the relative likeli-

hood for each price range (low/medium/high) of given house instances. We answer RQ1,

RQ2 and RQ3 by analysing the results of four measures mentioned above (completion

time, Brier score, over-reliance and under-reliance).

In experiment 2, we recruited a new and smaller cohort and asked them to do the

same tasks as in experiment 1, but in addition, we asked participants to explain their

decisions using free text. We conduct this experiment separately from the quantitative

data in experiment 1 because asking participants to explain their reasoning cognitively

forces them to engage with the instance, interfering with their natural decision-making

process, and therefore potentially affecting the quantitative results. We then performed a

deductive analysis of their explanations to answer RQ4.

Each experiment was designed as a Qualtrics2 survey and participants accessed the

survey through Prolific3. The experiment required a maximum of 25 minutes to finish.

There were 12 house instances given, equivalent to 12 questions. These 12 questions

were evenly distributed into four question categories: (1) where the model gives correct

predictions with high uncertainty, (2) where the model gives correct predictions with low

uncertainty, (3) where the model gives wrong predictions with high uncertainty and (4)

where the model gives wrong predictions with low uncertainty. Thus, there are three ques-

tions in each category. Study participants were not informed about in which category the

question belongs. The questions are ordered randomly in the experiments.

The uncertainty is measured by the cross entropy as follows. We use the cross entropy

because it is the most common measure of uncertainty in probabilistic models.

u(h) = − ∑
h∈H

p(h) log p(h) (4.10)

2https://www.qualtrics.com
3https://www.prolific.com
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where u(h) is the uncertainty level of hypothesis h given the probabilistic output is p(h).

To ensure there was a clear difference between high and low uncertainty, we selected

instances with low uncertainty by choosing instances with entropy less than 0.3, and high

uncertainty by choosing instances with entropy greater than 0.7. Participants did not

know the certainty nor how many test instances were correct/incorrect. Each participant

was paid a minimum of £4 for their time, plus a bonus of £2 if they could answer at least

9 out of 12 questions correctly. Participants were also given a plain language statement,

and consent form and did a training phase with 3 example questions before answering

the 12 test questions.

For RQ4 the text is a response to “Can you please explain why you selected this

option?”. We analysed a total of 12 (questions) × 95 (participants) = 1140 responses. The

final analysis includes 1,031 responses after removing 109 responses due to poor quality.

Each response is assigned to at least one category (or code): Using feature values or Using

evidence. We then perform a simple deductive analysis by reading each response and

assigning the relevant codes. We explain each code as follows: (1) Using Feature Values:

participants rely on the feature values and their background knowledge to make the final

decision without using the model evidence; and (2) Using Evidence: Participants rely on

the evidence provided by the model and possibly their background knowledge to make

the final decision.

We chose these two codes based on the idea of machine explanation and human in-

tuition [39, 40]. Specifically, using evidence refers to using the machine explanation and

therefore, making use of the model evidence to support decision-making. On the other

hand, using feature values is relevant to using people’s intuitions of the task based on the

input feature values. Therefore, using the qualitative analysis, we explore how people

use the model evidence and their intuitions in the three decision-making approaches.

4.3.6 Participants

Experiment 1 Using the power analysis for the F-test for one factor ANOVA and as-

suming the power of 0.8 and significant alpha of 0.05, we found that a sample size of 300

participants in three groups guarantees a small effect size of 0.2. In total, we recruited
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N = 302 participants on Prolific, distributed into three conditions: 102 participants in

C1, 99 participants in C2 and 101 participants in C3. Participants are selected from the

United States, United Kingdom, and Australia and must be fluent in English. Gender-

wise, 192 were women, 103 were men, 4 self-specified their gender and 3 declined to state

their gender. Age-wise, 94 participants were between Ages 18 and 29, 91 were between

Ages 30 and 39, 44 were between Ages 40 and 49, and 73 were over Age 50. All col-

lected data were included in the analysis, as there was no evidence indicating that any

participants provided poor-quality data.

Experiment 2 We recruited N = 95 participants on Prolific, distributed into three con-

ditions: 30 participants in C1, 34 participants in C2 and 31 participants in C3. Participants

are selected from the United States, United Kingdom, and Australia and must be fluent in

English. Gender-wise, 52 were women, 41 were men, and 2 declined to state the gender.

Age-wise, 38 participants were between Ages 18 and 29, 37 were between Ages 30 and

39, 10 were between Ages 40 and 49, and 10 were over Age 50. Participants in the first

study were not allowed to participate in the second.

4.4 Experiment Results

In this section, we show the results of two experiments. In the first experiment, we ex-

plore whether hypothesis-driven can improve task efficiency and task performance, and

reduce reliance compared to recommendation-driven and AI explanation only. In the sec-

ond experiment, we understand how participants used our hypothesis-driven approach

differently compared to the other two baselines.

4.4.1 Experiment 1: Quantitative Results

We performed a Shapiro-Wilks test to check the data normality and we found that our

data was not normally distributed (p < 0.05). Therefore, we apply the non-parametric

Kruskal-Wallis test to analyse non-normally distributed data. We then perform post-hoc

Mann-Witney U tests to do pairwise comparisons. The results are visualised in Figure 4.1
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and Figure 4.2. The significant differences between the two conditions are highlighted in

italic red in the figures where p < 0.05.

Task efficiency

Figure 4.1: Completion time. Lower is bet-
ter. Means represented as dots.

Figure 4.2: Brier score. Lower is better.
Means represented as dots.

Figure 4.1 shows the completion time in three conditions. There is no statistically sig-

nificant difference among these three conditions (p ≈ 0.9). We reject H1a/b. This shows

that hypothesis-driven does not take more time to complete the task than recommendation-

driven and AI-explanation-only.

Task performance

We evaluate participants’ decision-making performance by using the Brier score. A lower

Brier score indicates better decision accuracy. As seen in Figure 4.2, participants in the

hypothesis-driven condition (M = 0.267, SD = 0.063) have a lower Brier score than the

other two approaches (C1: (M = 0.290, SD = 0.071), C2: (M = 0.295, SD = 0.073)). We

accept H2a/b with small effect sizes. Therefore, hypothesis-driven helps participants be

confident when they make a correct decision, and be less confident when they make a

wrong decision.
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Over-reliance

Figure 4.3: Over-reliance. Lower is better.
Means represented as dots.

Figure 4.4: Under-reliance. Lower is better.
Means represented as dots.

In Figure 4.3, hypothesis-driven (M = 53.30, SD = 22.73) reduced over-reliance sig-

nificantly compared to recommendation-driven (M = 73.86, SD = 20.91) (p = 1.5 ×

10−8, r = 0.449). We accept H3a with a medium effect size of 0.449. Moreover, AI-

explanation-only (M = 54.21, SD = 22.51) also reduces over-reliance compared to the

recommendation-driven approach (p = 1.6 × 10−8, r = 0.450).

Under-reliance

In Figure 4.4, hypothesis-driven (M = 24.42, SD = 18.19) significantly reduced under-

reliance compared to AI-explanation-only (M = 41.25, SD = 27.18) (p = 1.09 × 10−6,

r = 0.387). We accept H3b with a medium effect size of 0.387. This is not surprising be-

cause we expect that participants in the AI-explanation-only condition are the most likely

to ‘under-rely’ due to being unable to compare evidence across hypotheses nor see a rec-

ommendation. Recommendation-driven (M = 17.81, SD = 20.35) has the least under-

reliance value because participants were given recommendations.
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(a) In control (Higher is better) (b) Preference (Higher is better)

(c) Mental demand (Lower is better) (d) System complexity (Lower is better)

(e) Trust (Higher is better)

Figure 4.5: Subjective Measures in Experiment 1. Means represented as dots.
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4.4.2 Experiment 1: Subjective Questions

After doing the experiment 1, participants were asked to answer 12 subjective questions

(SQs) as follows.

SQ1. In control: I feel in control of the decision-making process when using this decision

aid. (0 = Disagree strongly; 10 = Agree strongly)

SQ2. Preference: I would like to use this decision aid frequently. (0 = Disagree strongly;

10 = Agree strongly)

SQ3. Mental demand: I found this task difficult. (0 = Disagree strongly; 10 = Agree

strongly)

SQ4. System complexity: The decision aid was complex. (0 = Disagree strongly; 10 =

Agree strongly)

SQ5. Trust: I am confident in the decision aid. I feel that it works well. (0 = Disagree

strongly; 10 = Agree strongly)

SQ6. Trust: The decision aid is very predictable. (0 = Disagree strongly; 10 = Agree

strongly)

SQ7. Trust: The decision aid is very reliable. I can count on it to be correct all the time.

(0 = Disagree strongly; 10 = Agree strongly)

SQ8. Trust: I feel safe that when I rely on the decision aid I will get the right answers. (0

= Disagree strongly; 10 = Agree strongly)

SQ9. Trust: The decision aid is efficient in that it works very quickly. (0 = Disagree

strongly; 10 = Agree strongly)

SQ10. Trust: I am wary of the decision aid. (0 = Disagree strongly; 10 = Agree strongly)

SQ11. Trust: The decision aid can perform the task better than a novice human user. (0 =

Disagree strongly; 10 = Agree strongly)
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SQ12. Trust: I like using the decision aid for decision-making. (0 = Disagree strongly; 10

= Agree strongly)

We evaluate SQ1-4 separately to measure 4 measures (In control, Preference, Mental

demand and System complexity). We aggregate SQ5-12 to measure Trust. We based the

trust questions on questions from [81].

In Figure 4.5, AI-explanation-only is significantly worse than the other conditions in

all facets. Moreover, recommendation-driven and hypothesis-driven are quite similar and

there is no statistical difference between these two conditions. The reason is that we con-

duct between-subject experiments so each participant has access to only one condition

and they do not have another condition to compare to. If we run within-subject experi-

ments to measure subjective questions in the future, participants can compare different

decision-making approaches and evaluate which one they prefer the most. Factor analy-

sis could also be used to consolidate the questions.

Notably, the hypothesis-driven condition did not result in the highest mental demand.

This is because the AI-explanation-only condition was more difficult to interpret. In the

AI-explanation-only condition, participants did not know which hypothesis the evidence

was referring to, making it challenging to make sense of the information. Moreover,

when participants relied on their prior knowledge, they could check their hypothesis

and assess the evidence to confirm it, which is easier than trying to understand a machine

recommendation when it differs.

4.4.3 Experiment 2: Qualitative Results

In Figure 4.6 and 4.7, we illustrate the number of times that participants used feature

values and evidence to make their decisions based on the text analysis. The questions

in this section (Q0-Q11) refer to the 12 house instances used in the experiment described

in Section 4.3.5. Participant comments are attributed to the question number, not the

participant ID.

For the recommendation-driven approach, participants use the feature values to con-

firm whether the decision aid’s prediction and explanation are reliable or not. If partici-

pants think the feature values do not match the evidence explanation, they will go with
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Figure 4.6: Frequency of using evidence to make a decision.

Figure 4.7: Frequency of using feature values to make a decision.

the feature values to make the final decision. Some examples that the study participants

in the recommendation-driven condition go against the decision aid’s prediction:

“Here, I believe the decision aid is mistaken. My rating would be medium because the

house is very old which is overlooked by the model. Other features are all decent or

above decent but the house age is an important feature.” – Q11
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“The location of the property is low so I thought that would bring down the price” –

Q7

Ignoring evidence is, of course, a good strategy if the decision-maker believes that the

evidence is wrong. However, recommendation-driven does not help participants to be

aware of the high uncertainty among multiple predictions. This limitation is mitigated

by the hypothesis-driven approach.

For the AI-explanation-only approach, participants often rely on the feature values

and not on the evidence explanation to make a decision. This is not surprising because

participants can find it difficult to interpret the evidence without seeing the label that

the evidence is referred to. We attribute this to the cognitive effort to link evidence to

hypotheses, leading to participants ignoring evidence and relying on input feature values

to make their decisions. This is a noteworthy limitation of AI-explanation-only as it makes

people overlook the explanation if the link to the evidence is unclear. In the study by

Gajos and Mamykina [64], the link from feature attributions to the task solution is more

straightforward than in our study, which may explain the divergence of results.

Participants more often use the evidence to make a decision in the hypothesis-driven

approach than in recommendation-driven or AI explanation only. This shows partici-

pants took advantage of the model evidence. In the two baseline conditions, participants

tended to ignore evidence seemingly due to the inability to interpret it, which means they

will fail to take advantage of the underlying model. In Figure 4.6, there are only two ex-

ceptions at Q6 and Q11 where the evidence is not the most used in the hypothesis-driven

condition.

We found that in hypothesis-driven, participants reported that it was difficult to make

decisions for two main reasons:

• Uncertainty awareness: This is where there are multiple hypotheses with similar

strength evidence. Participants are aware of the uncertainty in the model solely

based on the positive and negative evidence provided for all hypotheses. In this

case, participants use the input feature values or choose the hypothesis that they

think is slightly better than the others when making the final decision. Figure 4.8

shows an example where two hypotheses low and medium both have a positive and
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Figure 4.8: An example of uncertainty awareness (Q6).

Figure 4.9: An example of deceptive evidence (Q9).

negative weight of evidence, especially in the top three important features. For

instance, some participants explicitly explain their uncertainty in the text as follows.

“I was choosing between high and medium. Quality of construction, age and lo-
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cation are the most important features. When it was high, these were all positive.

Kitchen quality and fireplaces were negative, but these are not as important.” –

Q0

“The amount of negative or positive evidence for low or medium is the same,

including the three more important factors. Both medium or low could be viable

but medium has less variance and is overall more balanced.” – Q6

“The house is clearly not in a high bracket, but it is somewhat difficult to decide

between low and medium. There are stronger indicators in low, going both ways,

while medium has largely insignificant indicators. Low has a significant negative

weighting for house age and this pushed me towards medium.” – Q6

• Deceptive evidence: When the evidence was strongest for an incorrect option. In

this case, many participants just follow the evidence and make the wrong deci-

sion. Figure 4.9 illustrates an example of Q9 where we have all positive evidence

in hypothesis medium, but strong negative evidence in hypothesis high. Therefore,

all participants choose hypothesis medium, but hypothesis high is the ground truth.

Future work will need to address the challenge of building trustworthy evidence.

In summary, the qualitative analysis showed that participants took advantage of the

decision aid more in the hypothesis-driven condition than in recommendation-driven

and explanation-only conditions. Further, we also found that participants recognised

model uncertainty in the hypothesis-driven condition. However, there still remains a

limitation of having deceptive evidence.

4.5 Discussions

4.5.1 Strengths and weaknesses of our hypothesis-driven approach

First, participants using the hypothesis-driven approach required a similar time to com-

plete the task compared to the recommendation-driven approach. Participants in the
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hypothesis-driven condition also made higher quality decisions than recommendation-

driven and AI explanation only based on the Brier score. The results indicated that the

hypothesis-driven gave study participants a more complete picture of the underlying deci-

sion aid than the other two approaches, helping them to make use of the AI models when

they are right and be less confident when the models are wrong.

Moreover, hypothesis-driven reduced over-reliance significantly compared to the stan-

dard AI recommendation. Similarly, hypothesis-driven also reduced under-reliance com-

pared to AI explanation only. Importantly, the positive result for under-reliance using

the recommendation-driven is not cancelled out by the poor over-reliance result, com-

pared to the hypothesis-driven. The primary aim indicates potential for the use of un-

certainty/confidence [21, 127] and conformal prediction [200] to direct decision makers’

attention towards a set of hypotheses that it is confident about.

Using the qualitative analysis, hypothesis-driven helped participants take advantage

of the decision support tool’s evidence, and also recognise the uncertainty underlying the

model. Using the strength of evidence, participants are aware of the uncertainty between

multiple hypotheses. Therefore, they made an attempt to gauge the model uncertainty

by calibrating the weight of evidence depending on whether the feature is important or

not. Also, they could make use of the input feature values and choose the hypothesis that

they perceive most likely matches with those values.

On the other hand, recommendation-driven and AI explanation only do not support this.

We found that in recommendation-driven, people could use feature values to confirm

the validity of the decision aid’s prediction. However, they are not aware of the uncer-

tainty among different hypotheses. In AI explanation only, people often ignore using

the evidence and solely focus on using the feature values to make a decision because

interpreting the evidence with this approach can be a lot more mentally demanding.

4.5.2 Study limitations

There are also some limitations to the study. First, we ran the experiment on one dataset

(Ames Housing), which limits generalisability. In addition, since we follow the labels

from this particular dataset, there is no single ground-truth for the price of a house. The
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price can vary depending on many factors. Therefore, the experimental participants’

tasks are somewhat subjective. Further, this task has only three output classes, so only

three hypotheses, and we anticipate the results would be more interesting when we con-

sider more hypotheses. The current form of explanation can be further improved by in-

corporating contrastive explanations. At present, we present multiple WoEs for different

hypotheses, but these cannot be considered as contrastive explanations.

Regarding the experimental design, there are multiple forms of cognitive forcing, and

we tested just one. We could have added another experimental condition where we asked

participants to first think about their decision before showing the AI recommendation.

This condition may have close performance to the hypothesis-driven approach. Finally,

the human experiment is currently conducted with laypeople while experts likely interact

with the decision-aiding tool differently from laypeople [60]. It is also important to note

that we currently use the output labels of the model as the hypotheses, while domain

experts may have more and different hypotheses.

4.6 Conclusion

In this chapter, we show that the hypothesis-driven approach using Weight of Evidence

(WoE) can significantly reduce reliance and improve decision-making quality compared

to two other prevalent decision-making approaches (recommendation-driven and AI ex-

planation only). Furthermore, hypothesis-driven helps participants to be aware of the un-

certainty among multiple options. Nevertheless, there still remains a challenge of study

participants relying on the wrong (or misleading) evidence. Therefore, future work can

address this challenge by exploring different approaches for presenting trustworthy ev-

idence. More generally, potential future work is to consider the uncertainty/confidence

in the generated evidence.





Chapter 5

Visual Evaluative AI

This chapter presents Visual Evaluative AI, a decision-aid model that provides positive

and negative evidence from image data for a given hypothesis. Different from chapter 4, extract-

ing features from images is more complex than from well-structured tabular data, as it requires

sophisticated techniques like convolutional neural networks, whereas tabular data provides pre-

defined and explicit features. This challenge is not addressed in the original Weight of Evidence

(WoE) framework. Particularly, our Visual Evaluative AI model finds high-level human con-

cepts in an image and generates the WoE for each hypothesis in the decision-making process. We

computationally demonstrate the effectiveness of Visual Evaluative AI on different concept-based

explanation approaches. This model is further applied and evaluated in the skin cancer domain

by building a web-based application that allows users to upload a dermatoscopic image, select a

hypothesis and analyse their decisions by evaluating the provided evidence. Finally, we conduct

a user study to understand the differences between the recommendation-driven approach and the

hypothesis-driven approach and how they can impact human decision-making in supporting skin

cancer diagnosis.

5.1 Introduction

ACommon decision support approach called recommendation-driven provides either

or both the AI recommendation and the explanation for the given recommenda-

This chapter is based on the following pre-print article under review:
[P1] [130] Thao Le, Tim Miller, Ruihan Zhang, Liz Sonenberg, Ronal Singh. “Visual Evaluative AI: A
Hypothesis-Driven Tool with Concept-Based Explanations and Weight of Evidence.”
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tion [16, 205, 225]. However, this approach is yet to be effective because it limits the

control of human decision-makers, which can cause algorithm aversion [52] where people

do not trust the AI; or worse, over-reliance on the AI system [215]. Miller [153] proposes

a paradigm shift called hypothesis-driven using a conceptual framework evaluative AI.

The new framework aims to provide evidence for or against a given hypothesis. Rather

than telling the decision-makers what to do, hypothesis-driven allows them to have more

control of the decision-making process by incorporating their hypotheses and promoting

uncertainty awareness [126, 128].

The original Weight of Evidence (WoE) framework in Chapter 4 had been imple-

mented only for tabular data. Therefore, we extend the WoE in this chapter by applying

concept-based explanations [234, 238] to extract human-understandable concepts from

images and put these concepts into the WoE model. Additionally, despite existing meth-

ods like Grad-CAM [194] can provide contrastive explanations of various output classes,

they did not use concepts that humans can understand in their explanation process. For

that reason, we build and evaluate a Visual Evaluative AI model by combining concept-

based explanations for image data and the Weight of Evidence (WoE) framework. This

model offers hypothesis-driven decision-making by generating evidence for possible hy-

potheses of an image. In particular, we extract human concepts from images (e.g., reddish

structures, irregular pigmentation in dermatoscopic images) by using concept-based expla-

nation models (e.g., Invertible Concept-based Explanation (ICE) [238] and Post-hoc Concept

Bottleneck Model (PCBM) [234]). The WoE model is then applied to show how much each

concept contributes to a given hypothesis (e.g., melanoma, benign keratosis), which can be

used as evidence to support human decision-making.

Our contributions are as follows:

• The Visual Evaluative AI model that provides positive and negative evidence for a

given hypothesis for image datasets by combining concept-based explanations (In-

vertible Concept-based Explanation (ICE) [238] and Post-hoc Concept Bottleneck

Model (PCBM) [234]) and the Weight of Evidence (WoE) framework. The com-

bined models are called ICE+WoE and PCBM+WoE. We also provide public access
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to Visual Evaluative AI as a Python package so other researchers can use our tool 1.

• We computationally evaluate ICE+WoE and PCBM+WoE and show that ICE+WoE

and PCBM+WoE achieve comparable performance to the original CNN models

with significantly fewer concepts.

• We conduct a human behavioural experiment to investigate the differences between

the two approaches (recommendation-driven and hypothesis-driven) in the field of

skin cancer diagnosis. Study participants are individuals with a background in

the skin cancer field (e.g., PhD students, postdoctoral researchers, medical doctors

and melanographers). The results show that both approaches have pros and cons,

and the hypothesis-driven approach is more preferred by experienced diagnosers.

Based on this study, we also propose suggestions for the design of the decision-

making approach.

5.2 Methodology

In this section, we introduce our evidence generation model by combining a concept-

based explanation model (e.g., Invertible Concept-based Explanation (ICE) [238], Post-

hoc Concept Bottleneck Model (PCBM) [234]) and the Weight of Evidence (WoE) model [148].

In our experiments, we use Invertible Concept-based Explanation (ICE) [238] as an example

of unsupervised concept learning, and Post-hoc Concept Bottleneck Model (PCBM) [234] as

an example of supervised concept learning. Combining them together, we propose two

models to generate the evidence-based explanations called ICE+WoE and PCBM+WoE.

We provide a more detailed description of the concept-based explanation models and the

WoE model below.

5.2.1 Concept-based Explanations

We divide concept-based explanations into two categories: (1) supervised learning con-

cepts (concepts are labelled on each image in the training dataset) and (2) unsupervised

1https://github.com/thaole25/EvaluativeAI

https://github.com/thaole25/EvaluativeAI
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learning concepts (not having concept labels in the training dataset). Supervised concept

learning requires labelled concepts in the training set, or the concepts can be transferred

using another labelled dataset [234]. Unsupervised learning concept methods do not

require the concepts to be labelled during the training process. This method is helpful

when labelling concepts can be laborious, require expertise, or are not always available.

Moreover, unsupervised learning can give users more agency as they can find a new

concept that has not been labelled but is still used by a machine learning model. In our

application, the evidence will be referred to a concept (or feature) found in the image.

Each concept will have a positive/negative quantitative value that shows how much it

contributes to the given hypothesis.

The main difference between ICE+WoE and PCBM+WoE is that the concepts gener-

ated by ICE+WoE do not have labels returned by the model. In other words, ICE+WoE

identifies only important concepts for the classifier but does not assign a name for them.

The unlabelled concepts can then be assigned labels by a domain expert. On the other

hand, PCBM+WoE provides a concept name for each concept, which is learned from the

concept bank. It is important to note that the labelled concepts are not always reliable

and still require validation by a domain expert. Furthermore, the number of concepts is

fixed based on the concept bank in PCBM+WoE, while the number of concepts can be

chosen by the user in ICE+WoE.

5.2.2 ICE+WoE and PCBM+WoE

We will now explain the implementation of the combined models of concept-based ex-

planations and the Weight of Evidence (WoE) model, depending on the concept learning

method (unsupervised or supervised). Figure 5.1 shows an overview of the unsuper-

vised concept learning model, and how it can be combined with Weight of Evidence

(WoE) [148]. Figure 5.2 shows an overview of the supervised concept learning model

using transferred concept bank, and how it can be combined with Weight of Evidence

(WoE) [148].

Formally, let f : X → Rd be the pre-trained backbone model (e.g. ResNet, ResNeXt)

where X is the input space and d is the size of the embedding space. The dimension d of
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Figure 5.1: Unsupervised Concept Learning Model

Figure 5.2: Supervised Concept Learning Model

the feature embedding space is often large (e.g., 2048 features). We then aim to reduce the

dimensionality by using different techniques, either a reducer (for unsupervised learn-
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ing) or a concept bank (for supervised learning). Next, we get a set of selected concepts

and put them into a classifier layer g : RNc → Y where Y is the set of output classes, Nc is

the number of concepts. To implement the combined models ICE+WoE and PCBM+WoE,

we replace the classifier layer of ICE and PCBM with the WoE model.

The following sections will describe in detail unsupervised concept learning (i.e.,

ICE [238]) and supervised concept learning (i.e., PCBM [234]) based on their main dif-

ference after the feature embedding layer. For unsupervised concept learning, we use a

reducer to reduce the dimensionality of the feature embedding space. The learned con-

cepts may not be related to the concepts used in the domain; for example, they could

be invalid dermatological concepts or unknown to domain experts. In contrast, the su-

pervised concept learning technique learns the concept bank and transfers it to create

a concept embedding layer. This technique requires labelling concepts on the training

images, which is expensive.

Invertible Concept-based Explanation (ICE)

ICE [238] is an unsupervised concept-based explanation approach that applies a reducer

R such as Non-negative Matrix Factorization (NMF) to reduce the dimensionality of the

feature embedding space. NMF is a matrix factorization method that factorizes the fea-

ture matrix into two or more non-negative matrices [166]. We can also apply other di-

mensionality reduction methods such as PCA (Principal Component Analysis), which is

a linear transformation method that projects the feature matrix into a lower-dimensional

space. Eventually, we get a set of concepts fR(x) ∈ RNc at the reducer layer.

Post-hoc Concept Bottleneck Model (PCBM)

PCBM [234] is a supervised concept-based explanation approach that learns the concept

bank C and transfers it to create a concept embedding layer. We learn the concept bank

by training a linear SVM to separate positive concept examples (contain the concept) and

negative concept examples (do not contain the concept) in the embeddings based on CAV

(Concept Activation Vector) approach [104]. Importantly, the dataset used to learn the
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concept bank can be different from the dataset used in the task prediction. Therefore,

when the training dataset does not have concept labels, we can annotate concepts by

using another dataset that has concept labels and is in the same domain.

Formally, the concept library is defined as I = {i1, i2, ..., iNc} where Nc denotes the

number of concepts. The concept library can be selected by domain experts or learned

from the data [67]. For each concept i, there are a set of feature embeddings for positive

examples Pi = { f (xi,pos
1 ), ..., f (xi,pos

Npos
)} and for negative examples Ni = { f (xi,neg

1 ), ..., f (xi,neg
Nneg)

}

where Npos and Nneg are the number of positive and negative examples, respectively.

Next, a linear SVM is trained using Pi and Ni to learn CAV (the normal to the SVM’s deci-

sion boundary) for concept i, denoted as ci. Finally, we get the concept matrix C ∈ RNc×d

at the concept embedding layer.

Let g : RNc → Y be the classifier. To learn the PCBM, we minimise the loss function:

min
g

E
(x,y)∼D

[L(g( fC(x)), y)] +
λ

NcK
Ω(g) (5.1)

where fC(x) is the projection onto the concept subspace, L(ŷ, y) is a loss function such

as cross-entropy loss, Ω(g) is a complexity measure to regularize the model, and λ is the

regularization strength. In PCBM, a linear classifier such as a stochastic gradient descent

model is implemented in this layer.

Weight of Evidence

We replace the original classifier layer in ICE and PCBM with the WoE model. WoE is

used to measure the weight of evidence for each concept, whereas using plain concepts

does not provide this information. Similar to the WoE model in Section 4.2, we now

calculate the weight of evidence for each concept. For hypothesis h and concept ci, which

is equivalent to feature xi in 4.2, the weight of evidence woe is defined as follows.

woe(h | ci) = log
P(ci | h)

P(ci | Y−h)
= log P(ci | h)− log P(ci | Y−h) (5.2)

In the implementation of Visual Evaluative AI, we use the WoE without independence

assumption.
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5.3 Implementation

In this section, we show examples of concept-based explanations when applying Visual

Evaluative AI on a skin cancer dataset (i.e., HAM10000 dataset [204]).

5.3.1 Basic Concepts in Skin Cancer Diagnosis

Dermatologists usually diagnose skin cancer by following ABCD rule [160] or 7-point

checklist criteria [10, 100]. Comparing these two criteria, the 7-point checklist gives

higher sensitivity, which is the accuracy of correctly identifying malignant lesions [9].

In this section, we provide an overview of the basic concepts in skin cancer diagnosis by

focusing on the 7-point checklist criteria.

Following the terminology in Table 2 (page 18) [107] and [25], the seven concepts

used in the 7-point checklist are: (1) atypical pigment network, (2) blue-white veil, (3)

atypical vascular pattern, (4) irregular streaks, (5) irregular pigmentation, (6) irregular

dots/globules, and (7) regression structures. This is a scoring system that assigns a score

to each criterion, and the total score is used to classify the lesion as benign or malignant.

Details of the scoring are described in Table 5.1.

Criteria 7-point score

Major criteria
Atypical pigment network 2

Blue-white veil 2
Atypical vascular pattern 2

Minor criteria

Irregular streaks 1
Irregular pigmentation 1
Irregular dots/globules 1
Regression structures 1

Table 5.1: 7-point checklist criteria

Based on the 7-point checklist above, Kawahara et al. [100] provide a 7-point criteria

evaluation database called Derm7pt dataset. Using this dataset, we can extract 12 con-

cepts included in Table 5.2. Each concept can indicate whether the lesion is benign or

malignant.

Despite there being two common diagnostic outputs (benign and malignant), there
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Concept Name Description

Atypical Pigment Network concept activation for melanoma
Typical Pigment Network concept activation for benign

Blue Whitish Veil concept activation for melanoma

Irregular Vascular Structures concept activation for melanoma
Regular Vascular Structures concept activation for benign

Irregular Pigmentation concept activation for melanoma
Regular Pigmentation concept activation for benign

Irregular Streaks concept activation for melanoma
Regular Streaks concept activation for benign

Regression Structures concept activation for melanoma

Regular Dots and Globules concept activation for benign
Irregular Dots and Globules concept activation for melanoma

Table 5.2: 12 concepts used in the supervised method [231]

are seven classes of skin lesions that can be diagnosed based on the HAM10000 dataset [204],

as shown in Table 5.3. Each class has different characteristics and is classified into either

benign or malignant. It is worth noting that there is no clear answer for actinic keratoses 2.

This class can be considered as a pre-cancerous lesion, which can be classified as either

benign or malignant. In Australia, actinic keratoses are common and usually treated as

benign. However, in other countries, they can be considered as malignant. In this thesis,

I follow the authors of the HAM10000 dataset, which classify actinic keratoses as malig-

nant [205].

Diagnosis Lesion Type

Benign

(BKL) Benign keratosis-like lesions
(DF) Dermatofibroma
(NV) Melanocytic nevi
(VASC) Vascular lesions

Malignant
(AKIEC) Actinic keratoses
(BCC) Basal cell carcinoma
(MEL) dermatofibroma

Table 5.3: Seven output classes

2Based on a conversation with Prof. Peter Soyer
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5.3.2 Dataset and Model Implementation

We use the HAM10000 dataset [204] to train all models (original CNN backbones, ICE,

ICE+WoE, PCBM and PCBM+WoE). This dataset has a total of 10015 dermatoscopic im-

ages and seven output classes: Actinic keratoses (AKIEC), basal cell carcinoma (BCC),

benign keratosis (BKL), dermatofibroma (DF), melanoma (MEL), melanocytic nevi (NV)

and vascular lesion (VASC). Among these seven classes, actinic keratoses (AKIEC), basal

cell carcinoma (BCC), and melanoma (MEL) are malignant, while benign keratosis (BKL),

dermatofibroma (DF), melanocytic nevi (NV) and vascular lesion (VASC) are benign. We

choose the HAM10000 dataset instead of the 7-point checklist dataset [100] (2000 images)

because HAM10000 is a larger dataset with more samples, which can help achieve more

accurate classifiers. HAM10000 is also more generalised, as it was collected from mul-

tiple institutes, whereas the 7-point checklist dataset was collected from a single source.

Lastly, HAM10000 is more well-known, with many more existing works and baseline

models using this dataset.

We balance the dataset by applying Weighted Random Sampler 3 and data augmenta-

tion. Finally, each class has 1000 samples that were used for the training process, making

a total of 7000 samples for seven classes. The test set is selected as a fraction of the original

dataset (without augmentation). As in the original HAM10000, class DF has the lowest

number of samples (i.e., 75 samples). Therefore, we choose 20 samples in each class for

the test set, which represents 26% of class DF. We then have a total of 140 samples (20

samples × 7 classes) for the test set to evaluate the model performance.

Since images in the HAM10000 dataset do not have the concept labels, to get the con-

cept labels for the PCBM model, we train Concept Activation Vectors (CAVs) [104] on

the 7-point checklist dataset [100] to obtain the concept library I. Followed the previous

work [231, 234], we have 12 concepts: Atypical Pigment Network, Typical Pigment Net-

work, Blue Whitish Veil, Irregular Vascular Structures, Regular Vascular Structures, Irregular

Pigmentation, Regular Pigmentation, Irregular Streaks, Regular Streaks, Regression Structures,

Irregular Dots and Globules and Regular Dots and Globules. The PCBM model then used the

trained CAVs based on these 12 concepts and applied that to extract the concept. In more

3https://pytorch.org/docs/stable/_modules/torch/utils/data/sampler.html

https://pytorch.org/docs/stable/_modules/torch/utils/data/sampler.html
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Concept Name Positive Samples Negative Samples

Atypical Pigment Network 230 781
Typical Pigment Network 381 630
Blue Whitish Veil 195 816
Irregular Vascular Structures 71 940
Regular Vascular Structures 117 894
Irregular Pigmentation 305 706
Regular Pigmentation 118 893
Irregular Streaks 251 760
Regular Streaks 107 904
Regression Structures 253 758
Irregular Dots and Globules 448 563
Regular Dots and Globules 334 677

Table 5.4: The number of positive and negative samples for each concept in the concept
bank.

detail, we show the number of positive and negative samples for each concept based on

the 7-point checklist dataset in Table 5.4, which is used to learn the concept embeddings

in the PCBM model. The number of positive samples refers to how many images contain

the concept, while the number of negative samples refers to how many images do not

contain the concept. In our final chosen model, for each concept, we select 50 positive

samples (contain the concept) and 50 negative samples (do not contain the concept). The

learning rate was set to 0.01 and ridge regression was used at the classifier layer of PCBM.

5.3.3 Concept-based Explanations

Figure 5.3: Reddish structures

We iteratively try different numbers of concepts and work closely with a domain ex-

pert to refine and annotate the concepts. The domain expert is an academic dermatolo-
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Figure 5.4: Irregular pigmentation

Figure 5.5: Irregular dots and globules

Figure 5.6: Whitish veils

Figure 5.7: Irregular pigmentation

Figure 5.8: Dark irregular pigmentation
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Figure 5.9: Lines (Hair)

gist with more than 40 years of experience in the field. We decided to use the ICE+WoE

model to generate concept-based explanations for our human study because currently

the labelled concepts found by the PCBM+WoE model are often wrong and considered

unreliable by the expert. One possible reason could be the Out-of-Distribution (OOD)

problem, as the concept bank is trained on the 7-point checklist dataset [100] and then

applied to the HAM10000 dataset [204]. Furthermore, ICE+WoE also achieves higher

performance than PCBM+WoE in our computational experiments in Section 5.4. There-

fore, it is important to note that the concepts in our human experiment are not labelled

by the model, but are labelled by the expert.

Figures 5.3 to 5.9 show seven concept explanations found by ICE [238] in the HAM10000

dataset [204]. Each concept is represented by five examples (instances) in the training set

that segment areas of interest, specifically, the red polygon outlines. These outlines are

segmented using the ICE method, not hand-drawn. For instance, in Figure 5.3, the seg-

mentations detected by the model are reddish structures. These examples are selected

by getting the best feature importance, which can be estimated using the method in

TCAV [104]. In this case, we select five best examples that have the highest feature impor-

tance. We also ensure that the lesions are different from each other among the examples.

The examples are arranged in ascending order of feature importance scores, from left to

right. For instance, although we could not find a concept name that matches all five ex-

amples in Figure 5.9, we chose to annotate it as lines (hair) because the three rightmost

examples, i.e., the ones with the highest scores, focus on the hair in the images.

Specifically, the found concepts are (1) Reddish structures, (2) Irregular pigmentation,

(3) Irregular dots and globules, (4) Whitish veils, (5) Irregular pigmentation, (6) Dark

irregular pigmentation and (7) Lines (Hair). These concepts are identified as important
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by the classifier to make a decision. We then use these seven concepts to generate the

evidence by applying the WoE [148] and conduct a human experiment in Section 5.5.

Study participants can decide whether to use the evidence generated by the model to

make the final decision. For example, the model detects lines (Figure 5.9) as an important

concept, though it is a confounding feature and should be ignored in making the diagnosis.

5.4 Computational Experiments

In this section, we evaluate the computational performance of the combined models

ICE+WoE and PCBM+WoE on the skin cancer dataset (HAM10000) [204]. We compare

them in terms of accuracy and investigate the impact of the number of concepts on the

performance of ICE+WoE. The model configurations are explained in Section 5.3.

5.4.1 Experiment Design

We apply different CNN backbones (Resnet50, ResneXt50 and Resnext152) to train the

original CNN models, ICE, ICE+WoE, PCBM and PCBM+WoE. Based on each CNN

backbone, we compare the original backbone model with ICE, ICE+WoE, PCBM and

PCBM+WoE. We use the F1-score metric to evaluate the performance of the models. The

F1-score is calculated as the harmonic mean of precision and recall, which is defined as:

Precision =
True Positive (TP)

True Positive (TP) + False Positive (FP)

Recall =
True Positive (TP)

True Positive (TP) + False Negative (FN)

F1 = 2 × precision × recall
precision + recall

where True Positive (TP) is the number of correctly predicted malignant cases; False

Positive (FP) is the number of incorrectly predicted malignant cases; True Negative (TN)

is the number of correctly predicted benign cases; False Negative (FN) is the number of
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incorrectly predicted benign cases.

5.4.2 Computational Results

Figure 5.10: F1-score of ICE, ICE+WoE and the original ResneXt50 over different num-
ber of concepts. The left figure shows the performance of ICE and ICE+WoE with a
small number of concepts (4-12), while the right figure shows the performance of ICE
and ICE+WoE with a larger range of number of concepts (5-100).

Figure 5.11: Comparing different reducers NMF and PCA.
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CNN Model Precision ↑ Recall ↑ F1-Score ↑
Backbone

Resnet50

Backbone 83.08 ± 5.98 85.33 ± 6.20 84.04 ± 5.01
ICE(7) 73.34 ± 8.69 87.50 ± 10.04 78.99 ± 4.91
ICE(7)+WoE 80.13 ± 5.44 82.00 ± 6.81 80.85 ± 4.55
PCBM(12) 73.93 ± 8.94 82.08 ± 12.67 76.58 ± 6.31
PCBM(12)+WoE 80.73 ± 5.21 84.25 ± 3.35 82.32 ± 2.98

ResneXt50

Backbone 85.46 ± 4.63 87.25 ± 6.31 86.20 ± 4.18
ICE(7) 84.23 ± 5.49 88.58 ± 5.41 86.20 ± 4.11
ICE(7)+WoE 84.73 ± 5.00 86.33 ± 4.76 85.45 ± 4.25
PCBM(12) 78.93 ± 8.28 83.17 ± 14.43 79.83 ± 8.28
PCBM(12)+WoE 84.48 ± 4.86 85.50 ± 3.98 84.92 ± 3.64

Resnet152

Backbone 84.49 ± 6.48 86.08 ± 5.70 84.96 ± 3.09
ICE(7) 78.30 ± 8.11 87.42 ± 7.48 82.10 ± 4.37
ICE(7)+WoE 81.21 ± 4.90 85.08 ± 5.14 83.01 ± 4.13
PCBM(12) 76.49 ± 7.75 87.08 ± 5.15 81.09 ± 4.21
PCBM(12)+WoE 82.97 ± 5.37 84.83 ± 4.04 83.73 ± 2.99

Table 5.5: Performance for the original CNN model, ICE, ICE+WoE, PCBM and
PCBM+WoE. The ICE model uses an NMF (non-negative matrix factorization) reducer.
ICE(7) represents the ICE model with 7 different concepts. PCBM(12) is the PCBM model
with 12 labelled concepts. mean ± standard deviation of the performance are reported over
20 random seeds. Winners are indicated in bold.

ICE+WoE and PCBM+WoE achieved comparable performance to the original CNN
models

Table 5.5 reports the performance of ICE(7), ICE(7)+WoE, PCBM(12) and PCBM(12)+WoE

using three different CNN backbone models (Resnet50, Resnet152 [79] and ResneXt50 [230]).

We select 12 concepts for PCBM based on previous work [231, 234]. For ICE, we run ex-

periments with a number of concepts ranging from 5 to 40. As shown in Figure 5.10,

performance peaks at 7 concepts. Therefore, the final comparison in this table is made

between ICE(7) and PCBM(12).

The results show that ICE(7)+WoE and PCBM(12)+WoE achieve comparable perfor-

mance to the original CNN models. Particularly, with ResneXt50, the F1-score of ICE(7)+WoE

and PCBM(12)+WoE are 85.45 ± 4.25 and 84.92 ± 3.64, respectively, while the original

ResneXt50 has an F1-score of 86.20 ± 4.18. Therefore, ICE(7)+WoE (using 7 features) and

PCBM(12)+WoE (using 12 features) have similar performance compared to the original
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ResneXt50 with 2048 features.

Similar to the findings in [238], when we compare the performance using different

reducers as in Figure 5.11, NMF and PCA (principal component analysis), PCA provided

the best performance but could be less interpretable compared to NMF.

Having more concepts did not lead to better accuracy

Figure 5.10 shows the performance of the original ResneXt50, ICE and ICE+WoE over

different numbers of concepts from 5 concepts to 40 concepts. Two figures from the

left show the performance of ICE using the NMF reducer. When there are 5 concepts,

ICE(5)+WoE (80.77 ± 4.56) has a significantly higher F1-score than ICE(5) (74.08 ± 2.26)

(p = 8.48 × 10−7 < 0.001, d = 1.857). Since we have 2048 features at the classifier layer

of ResneXt50, ResneXt50 outperforms ICE(5)+WoE and ICE(5) significantly (p < 0.001).

But the performance of both ICE+WoE and ICE match the performance of the original

ResneXt50 when we have at least 7 concepts. Particularly, with as few as 7 concepts, ICE

and ICE+WoE achieve similar performance to the original ResneXt50 using 2048 features.

The performance of ICE and ICE+WoE also stopped improving at 7 concepts with a back-

bone of ResneXt50. The reason is that when we apply a reducer in ICE (e.g. NMF), some

important concepts are detected at first. Then after we increase the number of concepts,

some noisy concepts are detected, which could lead to a slight drop in the performance.

Eventually, all important concepts are found and match the performance of the original

CNN model.

In summary, the results show that with a few number of concepts (i.e., 7 concepts),

we can achieve comparable performance compared to the original CNN models. There-

fore, this indicates the accuracy of the evidence being generated, which is potentially

useful to the decision-makers. Importantly, despite the concept-based models (ICE(7),

ICE(7)+WoE, PCBM(12) and PCBM(12)+WoE) being slightly less accurate than the CNN

backbones, it would also be much easier for users to interpret and evaluate the evidence

by not showing too many concepts.
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5.4.3 Ablation Studies

Concept Bank Evaluation

Model Learning Rate Number of Samples Test Accuracy
(Positive or Negative)

resneXt50 0.001 25 0.63 ± 0.08
resneXt50 0.001 50 0.64 ± 0.06
resneXt50 0.001 75 0.65 ± 0.05
resneXt50 0.001 100 0.65 ± 0.05

resneXt50 0.01 25 0.65 ± 0.07
resneXt50 0.01 50 0.67 ± 0.06
resneXt50 0.01 75 0.69 ± 0.06
resneXt50 0.01 100 0.70 ± 0.05

resneXt50 0.1 25 0.66 ± 0.08
resneXt50 0.1 50 0.68 ± 0.06
resneXt50 0.1 75 0.71 ± 0.07
resneXt50 0.1 100 0.72 ± 0.07

Table 5.6: The performance of the concept bank using different learning rates and number
of samples (the number for each positive or negative sample).

We evaluate the performance of the concept bank using the 7-point checklist dataset [100]

as shown in Table 5.6 with different learning rates and the number of samples. With the

same learning rate, the performance is very similar despite an increase in the number of

learned samples. It is important to note that the concept Irregular Vascular Structures only

has 71 positive samples (Table 5.4). Therefore, we chose a maximum of 100 samples in

this ablation study to ensure that we do not rely on many augmented samples to learn

the concept bank.

Unsupervised learning (ICE) and Supervised learning (PCBM)

In Table 5.7, we compare the performance between ICE(12) and PCBM(12) using the same

classification layer (ridge) and the same number of concepts (12 concepts). The results

show that ICE(12)+Ridge outperforms PCBM(12)+Ridge in all three CNN backbones.

The reason is that the concept bank in PCBM is learned from the 7-point checklist dataset,
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CNN Model Precision ↑ Recall ↑ F1-Score ↑
Backbone

Resnet50
ICE(12)+Ridge 81.94 ± 4.76 85.50 ± 6.40 83.64 ± 5.25
PCBM(12)+Ridge 73.93 ± 8.94 82.08 ± 12.67 76.58 ± 6.31

ResneXt50
ICE(12)+Ridge 86.08 ± 4.73 87.50 ± 4.91 86.70 ± 4.01
PCBM(12)+Ridge 78.93 ± 8.28 83.17 ± 14.43 79.83 ± 8.28

Resnet152
ICE(12)+Ridge 82.49 ± 5.13 86.92 ± 3.64 84.53 ± 3.25
PCBM(12)+Ridge 76.49 ± 7.75 87.08 ± 5.15 81.09 ± 4.21

Table 5.7: A comparison between the unsupervised learning model (ICE) and supervised
learning model (PCBM). Both models use 12 concepts and have the same classification
layer (ridge). mean ± standard deviation of the performance are reported over 20 random
seeds. Winners are indicated in bold.

while ICE specifically focuses on the HAM10000 dataset and learns the concepts that

are most important for the classifier. Therefore, the concepts learned by ICE are more

accurate and relevant to the HAM10000 dataset.

Different Classifier Layers for ICE

CNN Model Precision ↑ Recall ↑ F1-Score ↑
Backbone

Resnet50

ICE(7) 73.34 ± 8.69 87.50 ± 10.04 78.99 ± 4.91
ICE(7)+Ridge 80.05 ± 6.19 85.42 ± 9.63 82.08 ± 4.56
ICE(7)+GNB 80.13 ± 5.44 82.00 ± 6.81 80.85 ± 4.55
ICE(7)+WoE 80.13 ± 5.44 82.00 ± 6.81 80.85 ± 4.55

ResneXt50

ICE(7) 84.23 ± 5.49 88.58 ± 5.41 86.20 ± 4.11
ICE(7)+Ridge 84.85 ± 5.06 88.00 ± 5.58 86.24 ± 3.86
ICE(7)+GNB 84.73 ± 5.00 86.33 ± 4.76 85.45 ± 4.25
ICE(7)+WoE 84.73 ± 5.00 86.33 ± 4.76 85.45 ± 4.25

Resnet152

ICE(7) 78.30 ± 8.11 87.42 ± 7.48 82.10 ± 4.37
ICE(7)+Ridge 80.99 ± 5.58 87.33 ± 6.68 83.82 ± 4.34
ICE(7)+GNB 81.21 ± 4.90 85.08 ± 5.14 83.01 ± 4.13
ICE(7)+WoE 81.21 ± 4.90 85.08 ± 5.14 83.01 ± 4.13

Table 5.8: Different classification layers in ICE. mean ± standard deviation of the perfor-
mance are reported over 20 random seeds. Winners are indicated in bold.

Since ICE uses the weights of the original CNN backbone models, we conduct a
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further ablation experiment by replacing the classifier layer of ICE with the Gaussian

Naive Bayes (ICE+GNB) to compare with ICE+WoE. The results in Table 5.5 show that

ICE(7)+WoE has similar performance to ICE(7)+GNB. The reason is that our implementa-

tion using WoE and GNB are both Naive Bayes methods so they use similar loss functions

when learning the concept scores.

In [238], the original ICE estimates weights by applying the method from TCAV [104].

As shown in Table 5.8, ICE(7) refers to this original ICE without using any classifier layer

to learn the weights and having 7 concepts after the reducer. We conduct an ablation

test by comparing the performance of the original ICE with the performance of using

classifiers such as Ridge, GNB and WoE, as shown in the flow 5.1. The results show that

ICE(7)+Ridge is slightly better than others in terms of classification accuracy.

5.5 Human Experiment

In this section, we conduct a human experiment to evaluate the effectiveness of the

recommendation-driven and the hypothesis-driven approach in skin cancer diagnosis.

We aim to investigate the impact of these two approaches on the decision-making pro-

cess, accuracy and user satisfaction.

5.5.1 Study Design

Figure 5.12: The recommendation-driven flow

The goal of this experiment is to understand the differences in terms of decision

accuracy, decision time and user satisfaction between the recommendation-driven and

hypothesis-driven approaches in supporting skin cancer diagnosis. We test only these
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Figure 5.13: The hypothesis-driven flow

two conditions because the study follows a within-subject design that requires partici-

pants to complete all conditions. Adding another condition would make the study too

long for participants and could lead to fatigue. Moreover, these two conditions are the

main approaches in decision support systems that we aim to compare. The study is con-

ducted on a web application called EvaSkan (Evaluative Skin Cancer), where participants

are asked to make skin cancer diagnoses using the two approaches. An example EvaSkan

interface is shown in Figure 5.14. To see the full protocol of our experiment and the web

interfaces being used, please refer to the supplementary document C.

There are three phases in the study. In phase 1, we collect the demographic infor-

mation of the participants including their roles, background, years of experience, and

whether they are familiar with AI and skin cancer diagnosis. In phase 2, we conduct

a within-subject design study. Study participants use two web interfaces for two con-

ditions (recommendation-driven and hypothesis-driven) and perform skin cancer diagnosis

tasks on a web page. In the recommendation-driven condition, participants are given the

AI prediction for the skin cancer diagnosis and the explanation of that prediction. In the

hypothesis-driven condition, participants are given explanations for and against all possi-

ble hypotheses. The web page records the interaction log of participants.
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Use via API · Built with Gradio

EvaSkan - Evaluative Skin Cancer
Unsupervised concept learning with Weight of Evidence model (ICE+WOE).

Please start selecting a dermatoscopic image and your hypothesis to generate the evidence. You can choose one in the examples provided.

For education and research use only.

Run

Please select one hypothesis

AKIEC BCC BKL DF MEL NV VASC

Examples

Pages: 1 2

Upload a dermatoscopic image

Evidence For Evidence Against

Your hypothesis

Figure 5.14: A screenshot of the EvaSkan web application

There are a total of sixteen different tasks (questions) for two conditions, eight of

which are in one condition, and eight in the other. Sixteen questions are uniformly dis-

tributed into four categories: (1) where the model gives correct predictions with high un-

certainty, (2) where the model gives correct predictions with low uncertainty, (3) where

the model gives wrong predictions with high uncertainty and (4) where the model gives

wrong predictions with low uncertainty.
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Conditions and tasks are randomly counterbalanced. Specifically, the order of the

conditions is randomised and the order of the tasks within a condition is randomised.

Further, out of sixteen images, we also randomly select images for each condition to

minimise selection bias of using the same set of images in each condition. At the end of

phase 2, we ask them to evaluate their preferences in these two conditions using bipolar

scale questions as follows:

1. In control: Scale these conditions based on how much you are in control of the

decision-making process.

2. Decision-making: Scale these conditions based on how helpful it is to you to make

the diagnosis.

3. Ease of use: Scale these conditions based on how easy it is to use.

4. Error detection: Scale these conditions based on how easy it is to spot mistakes in

the decision aid.

Finally, in Phase 3, we conducted a semi-structured interview by asking participants

to reflect on how they made the diagnoses in Phase 2 using a think-aloud protocol and

open questions about the design of our decision aids (DAs). The questions are included

in the supplementary document C. The study was pre-registered 4 and received ethics

approval (ID: 23208) before data collection. This study requires a maximum of one hour

to finish.

5.5.2 Study Hypotheses

Our research hypotheses are as follows:

• H1: The hypothesis-driven approach will take more time to make decisions than

the recommendation-driven approach.

• H2: The hypothesis-driven approach will help study participants make more accu-

rate decisions than the recommendation-driven approach.

4https://osf.io/d9csz

https://osf.io/d9csz
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• H3: Study participants will be more satisfied with the hypothesis-driven approach

than the recommendation-driven approach. More specifically,

– H3a: Participants feel they have more control of the decision-making process

when using the hypothesis-driven approach compared to the recommendation-

driven approach.

– H3b: Participants feel the hypothesis-driven approach is more helpful in mak-

ing a diagnosis than the recommendation-driven approach.

– H3c: Participants find the hypothesis-driven approach is easier to use than the

recommendation-driven approach.

– H3d: Participants find it is easier to spot mistakes in the decision-aid when us-

ing the hypothesis-driven approach compared to the recommendation-driven

approach.

5.5.3 Participants

We recruit individuals with a background in skin cancer through our professional net-

works. Participants receive 25 AUD upon completing the study. There are a total of 14

participants whose details are summarised in Table 5.9. Gender-wise, there are 7 females

and 7 males.

Some participants have used AI decision support tools in research settings, such as

Canfield Dermoscopy Explained Intelligence (DEXI), Canfield’s Dermagraphix, FotoFinder Mole-

Analyzer and Lesion Change Detection model. None of them have used AI tools in clinical

settings. We classify participants into either experienced or inexperienced as in Table 5.9

(Experience in Skin Cancer Diagnosis). Experienced participants are individuals who have

received clinical training (e.g., resident doctors, senior house officer, principal house offi-

cer, senior melanographer 5). Inexperienced participants include PhD students and post-

doctoral researchers working in the skin cancer field, but are not specifically trained to

become clinicians.

5https://www.careers.health.qld.gov.au/medical-careers/career-structure

https://www.careers.health.qld.gov.au/medical-careers/career-structure
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ID Role Years of Research/Work Experience in
Experience Field Skin Cancer

Diagnosis

P0 PhD Student & 5 Dermatology No
Senior Research Technician

P1 PhD Student 2 Melanoma No
Detection

P2 PhD Student & 5 Melanoma No
Research Assistant Detection

P3 Resident Doctor 2 Cutaneous Yes
Phenotyping

P4 Melanographer 1 Melanography No
P5 Resident Doctor 2 Dermatology Yes
P6 Melanographer 10 Dermatology Yes
P7 Postdoc 12 AI Implementation No

in Skin Cancer
P8 Postdoc 2 Biostatistics No
P9 Principal House Officer 1 Dermatology Yes
P10 Resident Doctor 3 Melanoma Prognosis Yes
P11 Senior House Officer 1 Dermatology Yes
P12 Principal House Officer 2 Dermatology Yes
P13 Senior House Officer 3.5 Melanoma Yes

Table 5.9: Study participant’s details. Year of Experience refers to the years they have spent
in that role.

5.5.4 Experiment Variables

This study has two independent variables (two conditions): recommendation-driven and

hypothesis-driven. To compare between these two conditions, we took the following

measures:

1. Time spent on each task (Instance time): We measure the time participants spend on

each diagnosis task in Phase 2 (one out of sixteen tasks in total). Then, we also

calculate the total time spent on all tasks in one condition (Total time);

2. Brier score We measure the effectiveness of task performance by evaluating both the
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confidence of the participant and the correctness of the answer. The formula is:

BSp =
1
N

N

∑
i=1

(Cp,i − Ap,i)
2 (5.3)

where: Cp,i is the confidence level of participant p in question i, ranging from 0 to

1; Ap,i is the answer score of participant p in question i, either 0 (wrong answer) or

1 (right answer). N is the number of questions, which is N = 8 in one condition;

3. Selected hypotheses: In the hypothesis-driven condition, we record which hypotheses

are being checked. We then calculate the percentage of selected hypotheses by dividing

the number of selected hypotheses by the total number of hypotheses, which is 7.

This measure can indicate whether study participants used their prior knowledge

in the decision-making process;

4. Self-reported bipolar scales: We ask participants to evaluate their preferences in these

two conditions in terms of in control, decision-making, ease of use and error detection

using bipolar scale questions as in the study design.

5.5.5 Quantitative Results

We now show the performance and self-reported bipolar scales of participants when in-

teracting with two conditions, recommendation-driven and hypothesis-driven.

Performance

Participants’ performances are summarised in Table 5.10. Regarding the time spent to

complete the task, the hypothesis-driven condition takes more time than the recommendation-

driven condition for all participants significantly. Moreover, experienced participants

take more time to evaluate each instance (task) in both interfaces, suggesting that they

are more careful in making decisions. Moreover, for experienced participants, the distri-

bution of Brier scores is tighter in the hypothesis-driven, with most participants achieving

scores close to 0. This result implies that experienced participants performed better with

the hypothesis-driven, whereas inexperienced participants had better performance with
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Figure 5.15: Brier score for all participants. The IDs here are different from the IDs in Ta-
ble 5.9 to protect participants’ privacy. Participants are separated into Experienced partici-
pants and Inexperienced participants based on the classification in Experience in Skin Cancer
Diagnosis in Table 5.9.

R H Wilcoxon t-test

All
Total time (s) ↓ 449.78 ± 301.95 580.68 ± 310.91 p = 0.05, r = 0.53
Instance time (s) ↓ 56.22 ± 45.59 72.59 ± 48.71 p < 0.001, r = 0.37
Brier score ↓ 0.36 ± 0.36 0.40 ± 0.36 p = 0.35, r = 0.09

Experienced
Total time (s) ↓ 503.21 ± 377.06 618.11 ± 369.43 p = 0.31, r = 0.36
Instance time (s) ↓ 62.90 ± 53.96 77.26 ± 55.05 p = 0.005, r = 0.35
Brier score ↓ 0.37 ± 0.35 0.36 ± 0.32 p = 0.94, r = 0.01

Inexperienced
Total time (s) ↓ 378.54 ± 165.38 530.78 ± 234.57 p = 0.09, r = 0.68
Instance time (s) ↓ 47.32 ± 29.38 66.35 ± 38.37 p = 0.006, r = 0.40
Brier score ↓ 0.35 ± 0.38 0.46 ± 0.40 p = 0.16, r = 0.20

Table 5.10: Performance of participants in terms of time required to complete all
tasks and the Brier score. R: Recommendation-driven, H: Hypothesis-driven. Win-
ners/significances are in bold.
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the recommendation-driven interface. Note that there is no significant difference in the

Brier score between the two conditions for all participants. However, the time required

to complete all tasks is very close to the significance level (p = 0.05) between the two

conditions for all participants. Based on the result, we can accept H1 (time) and reject H2

(accuracy).

Subjective Bipolar Scales

Figure 5.16: Bipolar scale counts of the approach’s subject metrics.

Metric Mean ± std One sample t-test

In control 2.71 ± 1.82 p < 0.001, d = 1.49
Decision-making 1.57 ± 2.53 p = 0.037, d = 0.62
Ease of use -1.07 ± 2.27 p = 0.100, d = 0.472
Error detection 0.93 ± 2.79 p = 0.234, d = 0.333

Table 5.11: Results of Subjective Bipolar Scales (-5 = Recommendation-driven is the best;
0 = equally likely, 5 = Hypothesis-driven is the best). Significances are in bold.

From Figure 5.16 and Table 5.11, participants show preferences in the hypothesis-

driven interface in terms of in control, decision-making and error detection. However, the
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two interfaces have no significant difference in ease of use, with a slight preference for the

recommendation-driven interface. This result is consistent with the quantitative results

in Table 5.10 where the recommendation-driven interface is faster to complete. We can

accept H3a (in control) and H3b (helpful in decision-making), but reject H3c (ease of use)

and H3d (error detection).

Selected Hypotheses

Figure 5.17: Percentage of selected hypotheses by participants.

Figure 5.17 shows the percentage of selected hypotheses by participants in the hypothesis-

driven condition. Experienced participants tend to select fewer hypotheses than inexpe-

rienced participants when checking the evidence. This result implies that experienced

participants apply their thoughts about the diagnosis and only check the evidence for

the hypotheses they think are relevant. Inexperienced participants, on the other hand,

tend to check more hypotheses as they do not have the base knowledge to decide the

possible hypotheses by themselves.
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5.5.6 Qualitative Results

In this section, we discuss the interview results after participants experience the two in-

terfaces. The results show that they are consistent with previous literature. More impor-

tantly, the qualitative results provide insights into the differences between the recommendation-

driven and the hypothesis-driven interfaces, which have not been addressed before.

Perceived Accuracy and Reliability of the Decision Support

Most participants commented that it was difficult to say about the accuracy because they

did not know about the ground truth of the test lesions. A participant said that their

decision would be very different without the AI information, so it would be helpful in

the future to evaluate whether there is a difference between having a decision support

and without having a decision support.

“I am pretty sure having this information would be a great help for me as a beginner.”

– inexperienced user

“A suggested diagnosis can distract me from making my own decision [...] I tried to

look at the image first and then look at the diagnosis provided by the AI.” – inexpe-

rienced user

Regarding the AI can help participants make better or worse decisions, a participant

said AI could make them doubt their initial decision if the AI contradicts their decision.

However, it would be helpful if they were not sure and wanted a second opinion from

the AI. Should the AI disagrees with the participant’s opinions, they would go with their

own diagnosis.

“It really depends on the case. If you see a clinical image and if you are very sure that

it’s [a diagnosis], I think the AI is going to make you doubt your initial thought if the

AI contradicts your decision. But I think it would be helpful in case you are not sure

and you would want a second opinion from an AI system.” – inexperienced user
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User Concerns

A participant expressed concern regarding the dataset used to train the AI, noting that

the training data performs extremely well within a controlled environment. The real-

world data can be variable and they would be keen to know how AI would behave out-

side of the training data. Moreover, HAM10000 data do not have a category between

nevus and melanoma. They look similar but very separate. This is the current failure of

the training dataset that needs to be addressed by differentiating this middle ground in

the future.

Regarding the described features (concepts), features described are high-level, which

can be difficult for beginners and junior doctors. A participant suggested it would be

more helpful if there were more descriptions of the labels (e.g., what reddish structures,

pigmentations mean). Users also suggested that the concepts (which are represented as

segmentations) should focus on the lesion, and have the ability to ignore the irrelevant

background (e.g., rulers, dark corners, etc.), which are confounding features. But in fact,

this shows that explainable AI is helpful in terms of helping participants take into con-

sideration if they should trust the AI or not.

“Sometimes the AI picked up something from the background rather than the lesion

itself, so I think it would give a false recommendation.” – inexperienced user

“When you see that the model is picking up things outside of the lesion of interest,

then you know that the diagnosis is going to be skewed by that. [...] But I think

that helps you as a clinician [...]. And you’re thinking about whether should I change

my diagnosis to be more in line with the model or should I stick with my own.” –

experienced user

Regarding the test images, some of them are straightforward but some others are

more challenging. This shows the limitation of the current study as doctors would need

more information such as patient history, clinical location, age, sex, other images, etc.

before they can make a diagnosis rather than relying on a single dermoscopic image.

“The pictures you selected [...] Some of them were more quite straightforward but

some of them were more challenging, particularly the pigmented lesions were often
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at the borderline. The recommendation-driven struggles with those.” – experienced

user

Perceived Evidence Quality

Overall, the provided evidence is quite good. Participants used both the concepts on the

images and the weight of evidence of each concept. They often check the segmentations

that represent features first to see if they can rely on them (how much they agree with

them). Then, they use either the weight of evidence provided to make their diagnosis or

go with their own knowledge of the dermoscopy. If they think the evidence were reliable,

they would calibrate their decision to be closer to the decision aid.

“[..] realise that the areas that it was highlighting weren’t necessarily the area of

interest. So I sort of go more with my own understanding of dermoscopy and think

what would I say if I didn’t have the aid.” – inexperienced user

“If it pulled out a good region of interest and it has what I would assume is the correct

amount of weight put into it. Then that would sway more than if you’re looking at

something that you don’t think is relevant.” – experienced user

Sometimes, the segmentation on the test lesion and the training lesions are not consis-

tent in finding the same area on the skin. For instance, in one example, the segmentation

on the test lesion shows the whole lesion, including some external skin. But in the ex-

ample training lesions, it just points at a specific area within the larger lesion. In another

case, the evidence overlaps in multiple features - highlighting the same area but repre-

senting different features.

Use of Additional Self-Sourced Evidence in Decision-Making

Some participants tried to look at the original lesion first before checking the recommen-

dation and evidence provided by the AI. Participants with experience in the skin cancer

field would apply their knowledge to validate whether they should trust the decision

aid’s provided information. Furthermore, they also found other evidence that the model
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failed to detect in the explanation. However, an experienced participant said that they did

not use external evidence often in the hypothesis model. The self-sourced evidence only

influences probably 15% of their decision-making, and they mainly rely on the evidence

being provided, especially weights of evidence. Overall, the two interfaces have the ad-

vantage of pointing out important aspects of the dermoscopy that the doctors might have

missed.

Pros and Cons of the Recommendation-driven Interface

The recommendation-driven has the main advantage of requiring a shorter time to do the

diagnosis task and simpler to follow the information on the interface. Furthermore, the

recommendation-based approach provides the most likely diagnosis, which is assumedly

closer to the ground truth by inexperienced participants. Therefore, beginners in the field

prefer the recommendation-driven because it is more streamlined and they only need to

confirm if they want to follow the recommendation or not.

“If you look at lots of lesions, like hundreds of lesions. I think the benefit of the

recommended is it sort of directs you [...] It’s directing you to the most likely and

showing you the evidence. So be a lot quicker.” – experienced user

However, a major disadvantage of the recommendation-driven is that it can bias the

clinicians. Experienced participants suggested that users should be required to make

their own decisions before looking at the AI recommendation. Furthermore, when the

recommendation contradicts the user’s own diagnosis, despite being very confident with

their initial diagnosis, users can doubt their opinions and eventually a wrong AI recom-

mendation can lead to a wrong direction.

“Having a decision-aid’s recommendation would be a disadvantage because it may

influence your own clinical assessment in a negative way.” – inexperienced user

“I’m a huge fan of the recommendation one because as soon as I open the slide, it’s

just got a diagnosis there. So it’s sort of pre-primed you to think what it is.” – expe-

rienced user
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Some experienced participants actually found that the recommendation-based ap-

proach easier to make the decision compared to the hypothesis-driven approach because

they only have to compare the AI recommendation and their own diagnosis, which re-

quires processing less information and clearer than the hypothesis-driven modality.

“I assume it’s pulling from a probability-weighted diagnosis [...], so it gives you the

most amount of contrast between yourself and the computer, which I like.” – experi-

enced user

“I think it [the recommendation-driven] was clearer than the hypothesis-driven modal-

ity in that I found the compare and contrast a bit more finicky to use, whereas the

recommendation put forward what the AI thought was the best but you could still

use your own decision making when it came to.” – experienced user

Pros and Cons of the Hypothesis-driven Interface

Some participants felt more confident in using the hypothesis-driven because it has more

options for the users to choose from and they can compare and contrast between different

hypotheses. It lets the users check where the AI is looking for each diagnosis. This design

is especially important when users disagree with the model’s recommendation and want

to see the alternative options with their corresponding evidence. However, it requires

users to have a good base of knowledge for all seven diagnoses to make comparisons

between different hypotheses.

“I think the hypothesis-driven interface works better because you can compare be-

tween different diagnoses and how the AI looked for in both diagnoses.” – inexperi-

enced user

“I think the hypothesis-driven was a lot more helpful because a lot of that stems from

where the recommended viewing parts of the lesion are.” – experienced user

When using this interface, participants spent a substantial amount of time evaluating

the lesion before checking the evidence. This can reduce the bias of relying on the AI

model.
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“The advantage is that you’re still relying on your own initial clinical knowledge first

because you’re selecting what you think the possible lesions are.” – experienced user

However, having too much information can be a disadvantage, especially for partici-

pants who have a few years of experience in this field. When there is a lot of information,

participants can feel uncertain which diagnosis they should choose, they eventually go

with their own clinical assessment to make the final decision.

“If you have too much information displayed at once, then it becomes hard to pick and

choose. But maybe that’s for the best if our initial diagnosis is showing as not great

evidence, [...] maybe I should reevaluate my own choice.” – experienced user

“It’s depending on the experience of the user, whether they are resident or consultant,

it’s very easy to just click through all of the links and experience decision fatigue as a

result” – experienced user

Regarding which model is easier to use, it really depends on the setting. If we had

individuals who do not have much experience in diagnosis, they would opt for the rec-

ommendation model. But for participants who have more experience, would prefer the

hypothesis-driven. An experienced participant in the field commented that if they used

the aid in a clinical setting, they would be more likely to use the hypothesis model be-

cause it allows them to put forward their hypothesis first and avoid bias.

Suggested Improvements for the Decision Support

Participants have suggested some improvements for the decision aid to help them make

better decisions. The first suggestion is about improving feature descriptions. An inex-

perienced user said adding more detailed descriptions for the features’ labels would be

useful for them. For example, adding explanations to describe what reddish structures

mean, etc. and users can mouse over the feature’s label to see more details.

Secondly, users suggested to add more supporting information in the aid. Hypothesis-

driven could be improved by providing the rank of the hypotheses according to the AI

model, such as clearly ordering the hypotheses based on the most likely to the least likely.
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Or specifically providing a probability distribution of all possible diagnoses can be very

helpful. However, we should do that after the hypotheses have been selected to avoid

biasing the initial decision of the user. Furthermore, when giving a recommendation, we

should also supply the probability that the model has given to that diagnosis. This can

help users to be aware of the certainty of the AI model. Overall, adding a certainty level

for each diagnosis for both interfaces is an important improvement.

“I didn’t like that I had to click through all of them to see all of the evidence for each

one. [...] someone maybe with less experience would have to click through all of them

and that might be more time-consuming” – inexperienced user

Another suggestion is that the decision aid needs to assess the chance of malignancy.

So adding information about malignant versus benign, or showing the presence or ab-

sence of features that would suggest malignancy is an important thing. Moreover, adding

information such as having more images of the surrounding area and the history of the

lesion can be very helpful. Another idea is to provide case-based explanations for each

diagnosis. For example, if the model thinks a lesion is a melanoma, then the model

should provide other lesions from other cases that look similar to the current case, but

with the same diagnosis of melanoma. Regarding the decision-making workflow, the

recommendation-driven could be improved further by implementing the human-first

workflow.

“I like the idea that you look at it and you make up your own mind and it tells you

the recommendation afterwards. Whereas if it tells you what it thinks it is before you

even look at it, I think there’s cognitive guidance happening there.” – experienced

user

5.6 Discussions

In this section, we summarise the findings from the experiments and discuss the implica-

tions of the results. We also discuss the validity and limitations of the study and suggest

future work.
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5.6.1 The Two Sides of the Coin: Recommendation-driven and Hypothesis-
driven

Recommendation-driven Hypothesis-driven

Pros • Shorter time to do the task.

• More streamlined for beginners.

• Can compare and contrast be-
tween different hypotheses.

• Reduce the bias of relying on
the AI recommendation.

Cons • Wrong AI can lead to a wrong
direction.

• Users need to have a base of
knowledge.

• Wrong evidence can lead to a
wrong direction.

Table 5.12: Summary of the two interfaces.

Table 5.12 summarises the pros and cons of the two interfaces based on the qualita-

tive results. Recommendation-driven is preferred by beginners who do not have much

experience in the field. It is easier to use and faster to make a decision because they only

need to confirm if they want to follow the recommendation or not. However, it can bias

the clinicians and make them doubt their own diagnosis.

Hypothesis-driven is more suitable for experienced participants who have knowl-

edge in the field. It allows users to compare and contrast between different hypotheses

and check where the AI is looking for each diagnosis. However, it requires users to have

a good base of knowledge for all possible hypotheses to be able to evaluate the provided

evidence. It can also be overwhelming for users who do not have much experience in the

domain. In addition, the evidence provided by the AI can be wrong, which can lead to a

wrong decision.

Moreover, the order of AI in relation to the human decision-maker is also important.

We can either put the AI first or the human first, both of which have their own advantages

and disadvantages [89]. The AI-first approach can be used as a triage tool to reduce

the assessment time, but it can face regulatory challenges and over-reliance on AI. The

human-first approach can retain the current clinical workflow and use AI as a second

opinion, which can increase the sensitivity of the diagnosis. However, it can be time-
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consuming, with a potential increase in consultation time when there are disagreements

between the AI and the human. In our study, recommendation-driven implemented the

AI first, while hypothesis-driven could be improved by putting human opinions first

before providing evidence from the AI.

The question now is how should we design the decision-making interface in practice? The

answer is that we can combine the advantages of both interfaces. We can start by al-

lowing the user to put forward their hypothesis and evidence first to avoid automation

bias [33]. Then, we can provide the evidence found by the AI model to help users make a

comparison. Furthermore, they will be shown a ranking of hypotheses based on the level

of uncertainty. This allows users to be aware of the AI’s recommendation (i.e., the hy-

pothesis with the least uncertainty), as well as the supporting and opposing evidence for

all possible hypotheses. Alternatively, we can use conformal prediction [200] to present

multiple hypotheses within a given confidence bound. Uncertainty information can also

reduce the number of possible hypotheses when there are too many to choose from, help-

ing users focus on the most likely ones and avoid decision fatigue.

5.6.2 How Should the Evidence Be Presented?

The evidence should be detailed enough for users to understand the AI’s decision-making

process. Each feature (or concept) should be clearly and precisely shown where the AI is

looking at the image. We also need to give the weight of evidence for each feature. It is

not only about how much a feature contributes to the hypothesis, but also whether the

feature is important, or relevant to the hypothesis. Particularly, even if we have strong

evidence for a hypothesis, but the evidence is not relevant to it, its weight should be

calibrated or even ignored when making the final decision.

5.6.3 Threats to Validity

We will identify threats to the validity of the human study, including both internal and

external validity.
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Threats to Internal Validity

A threat to internal validity for a long human experiment (i.e., required approximately

one hour to finish) is the maturation. Participants could become tired over time and lose

concentration when doing later tasks. Instrumentation is the next threat that needs to be

considered. We use labels from the HAM10000 dataset [204] to measure the performance

of participants. But it is important to note that there is no single ground-truth. Different

experts in the field can still have different opinions on the labels. Therefore, we will need

a better approach to measuring the correctness of diagnoses rather than solely relying on

these labels. Moreover, our pool of participants is relatively small (14 participants), the

number of tasks is limited (16 tasks), trained on a single dataset (HAM10000), and limited

number of conditions as we did not consider no AI condition in the human experiment.

All these factors can affect the significance of the results.

Threats to External Validity

The first threat to external validity is sample characteristics. We focus on using our net-

work to invite experienced diagnosers to participate. This may not generalise to a broader

population. Secondly, regarding ecological validity, laboratory experiments very often

do not reflect the real world. For example, although some images can be straightforward,

in most cases, doctors would need more information such as the history of the patient,

age, regional images, etc. before they could make the diagnosis. So having a single der-

matoscopic image can be challenging for participants and cause high uncertainty in the

diagnosis. Moreover, a concern has been raised that AI can perform extremely well in a

controlled environment, but it can behave very differently in clinical settings. That is why

none of our experienced participants have used AI to support skin cancer diagnosis in a

clinical setting. Overall, at this stage, there is currently no formal accredited AI system

available, and we use AI only for research and internal testing purposes.
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5.6.4 Future Work

The presentation of evidence can be improved further. We can achieve this by considering

different sampling strategies to find image instances to describe the concept. We seek a

sampling strategy that makes the concept easier to understand for users.

Moreover, we can design a condition that combines the two interfaces (recommendation-

driven and hypothesis-driven) by providing both the AI recommendation and allowing

users to choose their own hypotheses. But importantly, users should be required to put

forward their own thoughts before looking at the AI recommendation. The decision-

aid can also allow argumentation between the decision-maker and the AI by identifying

differences between the user’s hypothesis and the AI’s recommendation, and the user’s

evidence and the AI’s evidence.

It is also important to note that our participants are not experts. They have back-

ground knowledge in the field of skin cancer but are still far from being experts. In our

current user study, we categorised them into experienced (those who have received clini-

cal training) and inexperienced (those who have not received clinical training) participants.

Future work should consider recruiting experts in the field, which could provide further

insights into how domain expertise might influence reliance on AI.

5.7 Conclusion

In this chapter, we introduce Visual Evaluative AI 6, a tool for hypothesis-driven deci-

sion support for image data. This tool can highlight the high-level concepts in an im-

age and provide positive and negative evidence for all possible hypotheses. Our tool

is further applied and evaluated in the skin cancer domain with a web-based applica-

tion called EvaSKan that offers skin cancer diagnosis support. By conducting a human

study and interviewing participants experienced in the skin cancer field, we compare the

hypothesis-driven approach with the recommendation-driven approach. We found that

these two approaches have their own pros and cons, but can be combined to provide a

better decision-support tool in the future.

6https://github.com/thaole25/EvaluativeAI

https://github.com/thaole25/EvaluativeAI


Chapter 6

Conclusion

IN the final chapter, I will discuss the overarching motivations, and revisit the research

questions and their contributions. I will then identify the limitations of the research

and suggest future work. Finally, I will conclude the thesis with the summary remarks.

6.1 Research Contributions

In this section, I address the research questions proposed in Chapter 1. Table 6.1 sum-

marises the contributions produced by addressing these research questions.

6.1.1 Explaining the Uncertainty

Presenting uncertainty has been applied as a way to promote users’ trust and under-

standing when interacting with AI models [222, 239]. However, users might want to

know why the model is uncertain, which can be helpful in deciding if they should trust

this uncertainty measure or not. To the best of my knowledge, there is still limited re-

search on explaining the uncertainty. Therefore, RQ1 seeks to address this challenge.

Explaining the uncertainty of the AI prediction is a promising research direction and

may lead to promoting appropriate trust in AI models [196, 202]. Seuß [196] suggest

some possible ways to explain the uncertainty that is appropriate for humans, such as

concrete explanation and counterfactual explanation. In concrete explanation, the source of

the uncertainty is explicitly indicated (e.g. “The prediction is salary > 50, 000 with 15%

of confidence because the person has a blue-collar job”). In counterfactual explanation, it

shows the minimal changes in the input to have a different output (e.g. “The prediction

133
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Research Question Contribution
RQ1 (Chap 3): How
can we explain
model uncertainty?

• Formalising counterfactual explanation of confidence
scores.

RQ2 (Chap 3): Can
explaining model
uncertainty improve
user trust and un-
derstanding in the
machine learning
model?

• Conducting two user studies to investigate whether ex-
planations of model uncertainty can help users better
understand and trust the model;

• Identifying limitations of example-based explanations
and visualisation-based explanations using qualitative
analysis.

RQ3 (Chap 4):
How can we de-
sign an effective
evidence-based
decision-support
model?

• Proposing evidence-informed hypothesis-driven
decision-making model based on the Evaluative AI
framework [153] and the Weight of Evidence (WoE)
framework [148];

• Conducting two user studies to evaluate whether the
hypothesis-driven approach can improve decision qual-
ity and reduce over-reliance on the AI model;

• Identifying limitations and challenges of the three
decision-support approaches, namely (1) AI-
recommendation, (2) AI-explanation-only and (3)
hypothesis-driven approach.

RQ4 (Chap 5): Based
on the new decision-
support paradigm,
how can we build a
decision-aid tool for
image datasets?

• Extending the Weight of Evidence (WoE) framework to
apply to image datasets;

• Building a decision-aid library that offers hypothesis-
driven decision-support by providing evidence for and
against a given hypothesis.

RQ5 (Chap 5):
How do different
decision-support
approaches impact
human decision-
making in skin
cancer diagnosis?

• Applying the aforementioned decision-support library
to a case study in skin cancer diagnosis;

• Conducting a user study with experienced people in der-
matology to evaluate the impact of the decision-support
approaches (recommendation-driven and hypothesis-
driven) on decision quality and user satisfaction.

Table 6.1: Research Questions and Contributions
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Original CF Model [189] Proposed CF Model
Goal Search for CF inputs of another

class.
Search for CF inputs of the same
class but with a different confidence
score.

Question Why does the model predict this
employee will leave instead of will
stay in this company?

The model predicts that this em-
ployee will leave. Why is the
model 70% confident instead of
40% confident or less?

Answer You could have got a prediction of
stay instead if Age had taken the
value of 45 rather than 25.

You could have got a
confidence score of 40% instead
if Daily Rate had taken the value
400 rather than 300.

Table 6.2: Differences between the original CF model and the proposed CF model. Bold
text indicates the factual input/class, underline text indicates the CF input/class.

is salary > 50, 000 with 15% of confidence. If the person had a white-collar job, the confi-

dence would be 80%”). My work is in line with the counterfactual explanation approach.

There are also some other approaches to solving counterfactuals for tabular [101, 159],

image [38, 51, 71], text [88, 186] and time series data [50]. However, none of these is for

explaining model confidence. Furthermore, van der Waa et al. [211] propose a framework

called Interpretable Confidence Measures (ICM) which provides predictable and explainable

confidence measures based on case-based reasoning [11]. This approach did not address

counterfactual explanations of model confidence.

Some recent works have proposed to explain the uncertainty. For example, Antoran

et al. [7] propose Counterfactual Latent Uncertainty Explanations (CLUE), to learn which

input features are responsible for the model’s uncertainty. Their model for finding coun-

terfactual examples is similar to mine. However, I go further by running more compre-

hensive user studies to measure the impact of the explanations on users’ trust, under-

standing and satisfaction. This corresponds to RQ2. I also consider different ways to

present the counterfactual explanations and compare them in terms of their strengths

and limitations.

Chapter 3 demonstrates the contributions stem from addressing RQ1 and RQ2. First,

I formalise the counterfactual explanation of confidence scores followed by the counter-
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factual model proposed by Russell [189]. Specifically, the proposed CF model shows how

the confidence score would change if the input features were different, but the output

prediction class remains the same. Table 6.2 shows the differences between the original

CF model and my proposed CF model.

Further, I present counterfactual explanations of confidence scores in two different

ways: (1) example-based explanations and (2) visualisation-based explanations. The for-

mer shows different examples with different confidence scores by modifying an input

feature and presenting them in a table. The latter visualises how changing a feature af-

fects the confidence score. To address RQ2, I then conduct two user studies to evaluate

the effectiveness of these explanations in improving users’ trust, understanding and satis-

faction. The results indicate that having explanations of model uncertainty can improve

users’ trust and understanding, compared to a baseline of no explanations. However,

there is no significant difference between the two types of explanations in terms of user

trust, understanding and satisfaction.

Moreover, this work identifies the strengths and limitations of these two types of ex-

planations. More specifically, using visualisation-based explanations makes it easier to

understand the correlations between input features and confidence scores. Regarding

example-based explanations, study participants often apply case-based reasoning by find-

ing the closest example in the counterfactual explanations to the test example, rather than

interpreting the linear correlation between the input feature and the confidence scores.

The findings suggest that we should use example-based explanations to present case-

based variables, and visualisation-based explanations to present continuous variables.

6.1.2 Designing the Evidence-based Decision-Support Model

A traditional decision-support approach is to provide recommendations to users based

on the AI model’s predictions. However, this approach only allows users to either accept

or reject the recommendation, without providing any other alternatives. This can lead

to under-reliance and over-reliance on the AI model [215]. To address this challenge, RQ3

aims to design a new decision-support approach that lets users make informed decisions

by allowing them to make their own decisions based on the evidence provided by the AI
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model, built on the Evaluative AI framework [153]. Figure 6.1 describes the difference be-

tween the traditional recommendation-driven approach and the new hypothesis-driven

approach.

Figure 6.1: Comparison between the recommendation-driven approach and the
hypothesis-driven approach

In Chapter 4, I propose an evidence-informed hypothesis-driven decision-making

model based on the Evaluative AI framework [153] and the Weight of Evidence (WoE)

framework [148]. This model allows users to select a hypothesis and see the correspond-

ing positive and negative evidence for that hypothesis. I further conduct user studies to

evaluate the effectiveness of the (1) hypothesis-driven approach when comparing with

two baselines: (2) AI recommendation and (3) AI-explanation-only. Using qualitative

data analysis, I explore how people make decisions differently when using these three

approaches. The findings suggest that in the recommendation-driven, users tend to use

input feature values to decide if they should trust the recommendation and its explana-

tion or not. In the AI-explanation-only, they mostly rely on the input feature values and

ignore the explanation. The reason is that the AI prediction (recommendation) is hid-

den in this approach. Therefore, as they can only see the explanation without knowing

which recommendation it is referring to, it is difficult for them to understand the expla-

nation. In the hypothesis-driven approach, users can see the evidence for and against all

hypotheses.

Moreover, I identify the strengths and limitations of the hypothesis-driven approach.

Regarding the strengths, the hypothesis-driven approach allows similar completion time,

improves decision quality and reduces over-reliance on the AI model, compared to the
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AI-recommendation approach. Hypothesis-driven can also reduce under-reliance when

compared to the AI-explanation-only approach. It is important to note that when com-

paring with the recommendation-driven, even though the hypothesis-driven can increase

under-reliance, it is more important to reduce over-reliance. The reason is that over-

reliance can lead to automation bias [215], which happens when people have unwarranted

trust in the AI [87]. This can result in harmful outcomes, especially in high-stake domains

like healthcare. Under-reliance, while reducing AI benefits, still allows human decision-

makers to remain in control and cautious, mitigating the risk of automation bias. Further,

the hypothesis-driven approach allows users to be aware of the uncertainty among dif-

ferent hypotheses, which is not addressed in the other two baseline approaches. Users

can then discount or completely ignore the weights of evidence depending on whether

the feature is important or not among hypotheses with high uncertainty.

6.1.3 Visual Evaluative AI - A Case Study in Skin Cancer Diagnosis

The Weight of Evidence (WoE) framework [148] in Chapter 4 had been implemented

only for tabular data, but now I introduce a method for dealing with image data. Extract-

ing features from images is more complex than processing pre-defined features in tabu-

lar data. This requires deep learning techniques such as convolutional neural networks

(CNNs). Therefore, referring to RQ4 and in Chapter 5, I extend the WoE framework by

applying concept-based explanations [234, 238] to extract high-level concepts. These con-

cepts represent the features of the image. These concepts (e.g., beak, leg, wing, etc.) are

then put into the WoE framework to calculate the evidence for and against a given hy-

pothesis (e.g., pelican, gull). By combining the WoE framework with the concept-based

explanations, I build and publish a decision-aid library called Visual Evaluative AI (VisE).

This library allows users to check the positive and negative evidence for all possible hy-

potheses of the image.

More specifically, I apply two concept-based explanation methods to generate evi-

dence: (1) unsupervised (e.g., Invertible Concept-based Explanations (ICE) [238]) and

(2) supervised (e.g., Post-hoc Concept Bottleneck Model (PCBM) [234]). When combined

with the Weight of Evidence (WoE) framework, I have two different versions of the Visual
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Evaluative AI library: (1) ICE+WoE and (2) PCBM+WoE. The experiment’s findings indi-

cate that both ICE+WoE and PCBM+WoE with as few as 7 concepts can achieve similar

performance to the original CNN models with 2048 features in the final CNN layer.

To understand the impact of different decision-support approaches, I apply the Vi-

sual Evaluative AI library to a case study in supporting skin cancer diagnosis. The web

application built on this is called Evaluative Skin Cancer (EvaSkan).

This refers to RQ5 in Chapter 5. Particularly, I conduct a user study with people who

have a background in dermatology to evaluate the impact of the two decision-support ap-

proaches (recommendation-driven and hypothesis-driven) on diagnosis quality and user

experience. The results show that experienced users prefer the hypothesis-driven, while

inexperienced users prefer the recommendation-driven. Both approaches have their pros

and cons. The recommendation-driven can be easier to use, but the hypothesis-driven

is more informative. Through subjective reports, the hypothesis-driven approach is pre-

ferred in terms of allowing users to have more control over the decision-making process,

more helpful in making the diagnosis and easier to spot errors in the information pro-

vided by the decision-aid.

6.1.4 Experimental Domains

Domain Dataset
Type

Source of
Subjects

Number of Sub-
jects

Chap 3 (Ex-
plaining the
Uncertainty)

Income predic-
tion [143, 217, 228]
& HR (resig-
nation predic-
tion) [99, 199]

Tabular
data

Crowdsourcing
(Amazon
MTurk)

180 (90 in each
domain)

Chap 4
(Evidence-
Based Decision-
Support Model)

Housing price pre-
diction [43, 179]

Tabular
data

Crowdsourcing
(Prolific)

397 (302 in Exper-
iment 1, 95 in Ex-
periment 2)

Chap 5 (Visual
Evaluative AI)

Skin cancer diag-
nosis [17, 37, 205]

Image
data

Professional
network

14

Table 6.3: Summary of human experiments
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Table 6.3 provides a summary of domains used in human experiments. In Chapter 3

and 4, I use domains (income, resignation, housing price predictions) that are familiar to

laypeople. Research has shown that participants provide high-quality answers [54] on

Prolific and much more attentional engagement [2] than on Amazon MTurk. Therefore, I

moved to Prolific for the second experiment in Chapter 4.

In Chapter 5, I use a domain that requires domain knowledge (dermatology) to incor-

porate human prior knowledge into the decision-making process. I recruited participants

from my professional network to ensure that they have the required background. This

can lead to selection bias and the selected pool of participants may not be representative

of all skin cancer experts. The pool of participants is also small, which can affect the

significance of the results.

6.2 Limitations

This section discusses the limitations of the proposed explainable models (counterfactual

models, evidence-informed hypothesis-driven decision-making model and Visual Eval-

uative AI library) and the human studies conducted.

6.2.1 Proposed Explainable Models

In Chapter 3, the main drawback is that this is one form of counterfactual explanation that

was built on the counterfactual model proposed by Russell [189]. A more comprehensive

evaluation of different counterfactual approaches is needed, especially to address the

five deficits of counterfactual explanations in [102]. In Chapter 4 and 5, a limitation lies

in providing trustworthy evidence. Since the evidence is generated by the AI model,

it is important to note that the evidence is not always reliable. Challenges remain in

presenting the evidence in a way that is easy to understand and trustworthy to users. In

Chapter 5, the concept-based explanations are not perfect and can be noisy, which are

still required to be validated by domain experts.
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6.2.2 Human Studies

First, regarding the internal validity, there are instrumentation threats. In all user studies,

I use publicly available datasets such as the income dataset from UCI Machine Learn-

ing Repository [55] and the IBM HR Analytics Employee Attrition Performance dataset

published in Kaggle [172] in Chapter 3; the Ames Housing [48] in Chapter 4; and the

HAM10000 dataset [204]. As in the dataset, we have labels to evaluate the performance

in experimental tasks. However, these labels are not the ground truth. Different people,

including domain experts, can label the same data differently. Therefore, the experimen-

tal tasks can be subjective.

When considering the external validity, first, the scale regarding the number of tasks,

the number of participants and the number of datasets used is limited. Particularly, all

human studies have from ten to sixteen tasks. In the skin cancer diagnosis experiment

(Chapter 5), the number of participants is fourteen. I also only use either one or two

datasets in each study. This can limit the generalisability of the findings. Second, I re-

cruited participants in Chapter 5 from my network to get people who have backgrounds

in dermatology. This can lead to both selection bias and the selected pool of participants

may not be representative of the general population. Third, the studies are artificial and

conducted in a controlled and laboratory environment so it may not reflect the real-world

scenarios.

6.3 Future Work

In this section, I propose some future work to address the limitations.

6.3.1 Combining Recommendation-driven and Hypothesis-driven

In Chapter 4, I compare the recommendation-driven and hypothesis-driven approaches.

These two approaches both have pros and cons. Therefore, I propose to combine these

two approaches to leverage the strengths of each. In this combined approach, users can

first put forward their initial thoughts without being provided any aid from the AI. Fol-
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lowing this, they will be provided with the rank of hypotheses based on the level of

uncertainty. Based on this, users can be aware of the AI recommendation (i.e., the hy-

pothesis with the least uncertainty), as well as the evidence for and against all possible

hypotheses. This can help users to make better decisions by considering both the AI rec-

ommendation and the evidence. Further, since they can provide their initial thoughts,

this can help to reduce the bias on the AI model [33].

Moreover, the decision-aid can allow argumentation between the decision-maker and

the AI. In this approach, users can provide their thoughts, including the evidence for their

decisions. Then, the decision-support approach will provide comparisons between the

user’s evidence and the AI’s evidence, and between the user’s hypothesis and the AI’s

hypothesis. Moreover, users can adjust the AI’s evidence based on their domain knowl-

edge. This can be helpful for users when they can compare their decisions with the AI

model’s decisions and contribute to improving the AI model when they believe the model

is wrong. This approach is based on the theory of sensemaking Data/Frame Theory [112],

where the process is iteratively done by combining System 1 (fast, intuitive) and System

2 (slow, rational) thinking [97]. People make their decisions based on their intuition and

then adjust their decisions when carefully examining the evidence being provided by the

AI. In this case, people can construct a frame based on the data and can question the frame

to construct a new one when new information arises.

Some recent works have used argumentation-based approaches to better design AI

decision support. For example, [45] introduced devil’s avocate to challenge the AI recom-

mendation or the majority opinion within a group. Alternatively, the devil’s advocate can

be used to present counter-arguments against the user’s decision [144]. Moreover, [145]

proposed the idea of Deliberative AI, which allows the human user and the AI to deliber-

ate conflicting evidence and arguments.

6.3.2 Human Experiment Design

In Chapter 4 and 5, we should control the cognitive load across experimental conditions

by including a cognitive load measurement such as NASA-TLX scales [78] or reaction-

time analysis. Since the hypothesis-driven condition can require more cognitive effort
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than the traditional recommendation-driven condition, we should seek to identify if

users perform worse with the hypothesis-driven approach, and if so, whether it is due to

cognitive load or the approach itself. Future work can consider using these cognitive load

measures when evaluating different decision-support approaches. Another aspect to im-

prove the human experiments is to assess whether trust calibration and decision quality

improve over time. Current experiments only compare the decision-support approaches

in a short-term setting, without considering the long-term effects of repeated exposure.

6.3.3 Generalisability

To improve the generalisability of the findings, I propose to conduct more user studies

with different datasets and domains. For example, in Chapter 5, I only use the HAM10000

dataset for the skin cancer domain. The Visual Evaluative AI tool can be applied to other

image datasets as well, which can help to strengthen the findings further and explore how

different domains can impact human decision-making. Moreover, I propose to conduct

user studies with different groups of people. In Chapter 5, I recruited participants using

my professional network, which is a threat to external validity. Since the number of

participants in this study is currently 14, the pool of participants should be larger to

ensure the generalisability of the results.

6.4 Summary Remarks

This thesis has addressed the challenges of improving explainable decision-support mod-

els. Overall, I have proposed a counterfactual explanation model of confidence scores, an

evidence-informed hypothesis-driven decision-making model and a Visual Evaluative

AI library. The results indicate that the evidence-informed models have the potential to

reduce over-reliance on the AI model and help users make better decisions. However,

challenges remain in providing better and more trustworthy evidence and reducing both

over-reliance and under-reliance on the AI model. Therefore, this thesis hopes to inspire

future research in addressing these challenges and developing more effective and reliable

decision-support approaches.
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Appendix A

Explaining the Uncertainty

A.1 Human Experiment

In this section, I will provide example questions used in the human experiment. There

are three conditions in the experiment: (1) Control, (2) Treatment (Example-Based) and

(3) Treatment (Visualisation-Based). Details of the experiment structure are shown in

Table 3.2 in Chapter 3.

A.1.1 Phase 2: Task Prediction

These are the example questions designed based on the income dataset [55]. Figure A.1,

A.2, A.3, A.4, A.5 and A.6 show the training and question phases in each condition.

A.1.2 Phase 3: 10-point explanation satisfaction rating scale

In phase 3, there are 8 rating scale questions to evaluate users’ satisfaction as follows (1 =

Disagree strongly; 10 = Agree strongly):

1. From the explanation, I understand how the confidence score changes.

2. This explanation of how the confidence score changes is satisfying.

3. This explanation of how the confidence score changes has sufficient detail.

4. This explanation of how the confidence score changes seems complete.

5. This explanation of how the confidence score changes tells me how to use it.
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6. This explanation of how the confidence score changes is useful to my goals.

7. This explanation of the confidence score shows me how accurate the AI prediction

is.

8. This explanation lets me judge when I should trust and not trust the AI algorithm.

A.1.3 Phase 4: 10-point trust rating scale

In Phase 4, there are 8 rating scale questions to evaluate users’ trust as follows (1 = Dis-

agree strongly; 10 = Agree strongly):

1. I am confident in the AI model. I feel that it works well.

2. The outputs (prediction and confidence score) of the AI model are very predictable.

3. The AI model is very reliable. I can count on it to be correct all the time.

4. I feel safe that when I rely on the AI model, I will get the right answers.

5. The AI model is efficient in that it works very quickly.

6. I am wary of the AI model.

7. The AI model can perform the task better than a novice human user.

8. I like using the AI model for decision-making.
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Powered by Qualtrics A

Protected by reCAPTCHA: Privacy A & Terms A

Q3.1.
Training: Understanding the Task
 
In the following task, you will see the attributes (information) of an anonymous employee,
such as marital status, education, occupation, age, etc. The Artificial Intelligence model (AI
model) uses these attribute values and gives a prediction that this employee either has an
income equal to or greater than $50,000 or less than $50,000. 

The AI model also provides a confidence score of the income prediction, which defines how
confident the AI model is in its own prediction. The confidence score is ranged from 0 to 100.
The higher the score, the more confident the model prediction is. 

You will be given information about some employees, such as marital status, education,
occupation, age, etc. You will also be given the output of the AI model prediction (>= $50,000
or < $50,000) but the confidence score will not be shown. Your task is to decide for which
employee the AI model will predict a higher confidence score.
  
You will be scored based on your answer. A correct answer will give you 1 point, a wrong
answer will reduce 2 points. If you select "I don't have enough information to decide", you
will receive 0 points for that question.
 
The final compensation will be calculated based on your final score: a score of 0 (or less
than 0) will receive $7 USD and for each additional score, you will receive a bonus of $0.2
USD
 
After you finish the task prediction, we will ask you to evaluate your trust and satisfaction using
sliders (track bars). You will not be scored when evaluating your trust and satisfaction. 
 
 

 → 

Share PreviewRestart Block
  

Tools
 



Figure A.1: (C1) Control condition: Training phase
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Powered by Qualtrics A

Attribute Employee 1 Employee 2 Employee 3

Marital Status Married Married Married

Number of years of education 12 15 14

Occupation Service Service Service

Age 64 64 64

Any capital gain No No No

Working hours per week 40 40 40

Education Bachelors Bachelors Bachelors

AI model prediction Lower than $50,000

Q4.3.
 
 
 
 
 
 
 
 
 
 
 

 
 
For which employee in the above table the AI model predicts with the highest confidence
score?

Q4.4.
Can you please explain why you selected this option? (Please write a brief sentence in the text
box)

Employee 1

Employee 2

Employee 3

I don't have enough information to decide

 → 

Figure A.2: (C1) Control condition: Question phase
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Q6.1.
Training: Understanding the Task
 
In the following task, you will see the attributes (information) of an anonymous employee such as
marital status, education, occupation, age, etc. The Artificial Intelligence model (AI model) uses
these attribute values and gives a prediction that this employee either has an income equal to or
greater than $50,000 or less than $50,000. 
 
The AI model also provides a confidence score of the income prediction, which defines how
confident the AI model is in its own prediction. The confidence score is ranged from 0 to 100. The
higher the score, the more confident the model prediction is.
 
You will be given an explanation table that helps you to understand how the confidence score is
calculated. In this explanation table, you will be presented with person’s details, the prediction
whether their income is less than or equal to $50K or whether it is greater than $50K, and the
confidence score. You will also be presented with several alternative values for some of the
person’s details, such as a change in their marital status or education. These do not change the
prediction of their income, but they do change the AI model’s confidence. The confidence level for
each alternative is also given in the table. You should look at the value changes of the person's
details and see how that correlates with the confidence score.
 
Your task is to decide for which employee the AI model will predict a higher confidence
score.
 
Here is an example of the explanation table
 

Attribute Original Value Alternative 1 Alternative 2 Alternative 3 Alternative 4

Marital Status Never Married - Divorced/Widowed Married -

Number of years of education 4 3 10 - -

Occupation Job Service - - - Blue-Collar

Age 21 - - 35 -

Any capital gain No - - Yes -

Working hours per week 48 - - - 37

Education No High School - Graduate - -

Confidence score 99.1% 99.3% 91.6% 40.6% 99.5%

AI model prediction Lower than $50,000

 
The above table shows the attributes of an employee with a confidence score of the AI model. The
AI model predicts that the income of this employee is lower than $50,000. When we change the
values of employee's attributes as in columns Alternative 1, 2, 3 and 4, the confidence score
changes but the AI model still predicts that the income of this employee is lower than $50,000.
 
Note that in Alternative Columns, notation (-) means the value is unchanged from the
original value, we only highlight the values that changed.
 
You will be scored based on your answer. A correct answer will give you 1 point, a wrong
answer will reduce 2 points. If you select "I don't have enough information to decide", you will
receive 0 points for that question. 
 
The final compensation will be calculated based on your final score: a score of 0 (or less than 0)
will receive the standard base rate of $7 USD and for each additional score, you will receive a
bonus of $0.2 USD
 
After you finish the task prediction, we will ask you to evaluate your trust and satisfaction using
sliders (track bars). You will not be scored when evaluating your trust and satisfaction. 

Share PreviewRestart Block
  

Tools
 



Figure A.3: (C2) Example-based condition: Training phase
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Powered by Qualtrics A

Protected by reCAPTCHA: Privacy A & Terms A

Attribute Employee 1 Employee 2 Employee 3

Marital Status Married Married Married

Number of years of education 12 15 14

Occupation Service Service Service

Age 64 64 64

Any capital gain No No No

Working hours per week 40 40 40

Education Bachelors Bachelors Bachelors

AI model prediction Lower than $50,000

Q7.3. See the explanation table below
 

Attribute Alternative 1 Alternative 2 Original Value Alternative 3 Alternative 4

Marital Status - - Married - -

Number of years of education 11 10 9 8 7

Occupation - - Service - -

Age - - 63 - -

Any capital gain - - No - -

Working hours per week - - 12 - -

Education - - High School - -

Confidence score 39.9% 49.4% 57.8% 65.2% 71.5%

AI model prediction Lower than $50,000

 
In the following table, for which employee the AI model predicts with the highest confidence
score?  

 
 
 
 
 
 
 
 
 
 
 
 

Q7.4.
Can you please explain why you selected this option? (Please write a brief sentence in the text
box)

Employee 1

Employee 2

Employee 3

I don't have enough information to decide

 → 

Share PreviewRestart Block
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Figure A.4: (C2) Example-based condition: Question phase
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Q9.1.
Training: Understanding the Task
 
In the following task, you will see the attributes (information) of an anonymous employee such as
marital status, education, occupation, age, etc. The Artificial Intelligence model (AI model) uses
these attribute values and gives a prediction that this employee either has an income equal to or
greater than $50,000 or less than $50,000.
 
The AI model also provides a confidence score of the income prediction, which defines how
confident the AI model is in its own prediction. The confidence score is ranged from 0 to 1. The
higher the score, the more confident the model prediction is.
 
You will be given an explanation graph that helps you to understand how an employee's
information (e.g. Education) changes can change the confidence score. The changes do not
change the prediction of their income (equal to or greater than $50,000 or less than $50,000), but
they do change the AI model’s confidence. You should look at the value changes of the person's
details and see how that correlates with the confidence score.
 
Your task is to decide for which employee the AI model will predict a higher confidence
score.
 
Here is an example of the explanation graph
 

The above graph shows the changes in the Education of an employee with changes in the
confidence score of the AI model. The AI model predicts that the income of this employee
is greater than or equal to $50,000. When we change the values of the employee's education as
in the horizontal line, the confidence score changes as presented in the blue line but the AI model
still predicts that the income of this employee is greater than or equal to $50,000.
 
You will be scored based on your answer. A correct answer will give you 1 point, a wrong
answer will reduce 2 points. If you select "I don't have enough information to decide", you will
receive 0 points for that question. 
 
The final compensation will be calculated based on your final score: a score of 0 (or less than 0)
will receive the standard base rate of $7 USD and for each additional score, you will receive a
bonus of $0.2 USD
 
After you finish the task prediction, we will ask you to evaluate your trust and satisfaction using
sliders (track bars). You will not be scored when evaluating your trust and satisfaction. 
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Tools
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Figure A.5: (C3) Visualisation-based condition: Training phase
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Powered by Qualtrics A

Protected by reCAPTCHA: Privacy A & Terms A

Attribute Employee 1 Employee 2 Employee 3

Marital Status Married Married Married

Number of years of education 12 15 14

Occupation Service Service Service

Age 64 64 64

Any capital gain No No No

Working hours per week 40 40 40

Education Bachelors Bachelors Bachelors

AI model prediction Lower than $50,000

Q10.3. See the explanation graph below
 

In the following table, for which employee the AI model predicts with the highest
confidence score?

 
 
 
 
 
 
 
 
 
 
 
 

Q10.4.
Can you please explain why you selected this option? (Please write a brief sentence in the text
box)

Employee 1

Employee 2

Employee 3

I don't have enough information to decide

 → 

Share PreviewRestart Block
  

Tools
 



Figure A.6: (C3) Visualisation-based condition: Question phase
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Appendix B

Hypothesis-Driven Decision Making
Model

B.1 Statistics of Experiment 1

In this section, I show the statistics of four measures in Experiment 1 as in Table B.1,

B.2, B.3 and B.4. In these four tables, R means Recommendation-driven, O means

AI-explanation-only and H means Hypothesis-driven. The statistics include the count,

mean, standard deviation, minimum, 25% (first quartile), 50% (median), 75% (third quar-

tile) and maximum of the measures.

count mean std min 25% 50% 75% max
condition (median)

(C1) R 102.000 17.920 9.342 5.100 11.492 15.767 21.792 67.017
(C2) O 99.000 18.619 11.258 3.500 12.375 15.467 22.417 92.650
(C3) H 101.000 18.087 9.255 5.967 11.850 15.733 21.450 55.833

Table B.1: Statistics of completion time per condition (in minutes).
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B.2 Human Experiment Hypothesis-Driven Decision Making Model

count mean std min 25% 50% 75% max
condition (median)

(C1) R 102.000 0.290 0.071 0.183 0.239 0.277 0.333 0.484
(C2) O 99.000 0.295 0.073 0.140 0.242 0.281 0.337 0.594
(C3) H 101.000 0.267 0.063 0.154 0.228 0.252 0.304 0.474

Table B.2: Statistics of Brier score per condition.

count mean std min 25% 50% 75% max
condition (median)

(C1) R 102.000 73.856 20.913 33.333 66.667 66.667 100.000 100.000
(C2) O 99.000 54.209 22.505 0.000 41.667 50.000 66.667 100.000
(C3) H 101.000 53.300 22.733 16.667 33.333 66.667 66.667 100.000

Table B.3: Statistics of over-reliance (%) per condition.

count mean std min 25% 50% 75% max
condition (median)

(C1) R 102.000 17.810 20.346 0.000 0.000 16.667 33.333 100.000
(C2) O 99.000 41.246 27.183 0.000 16.667 33.333 50.000 100.000
(C3) H 101.000 24.422 18.191 0.000 16.667 16.667 33.333 100.000

Table B.4: Statistics of under-reliance (%) per condition.

B.2 Human Experiment

In this section, I will show example questions in my human experiments. There are two

main phases in each experiment:

• Training phase: Participants were given three example questions.

• Test phase: After finishing the training phase, participants were given twelve test

questions.

First, Figure B.1a, B.2a and B.3a show the first page of the training phase in three

conditions. This page introduces the task, how to read the evidence, what information
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Hypothesis-Driven Decision Making Model B.2 Human Experiment

will be given and how the participants will be scored. After that, three example questions

will be shown, one of which is Figure B.1b or B.2b or B.3b depending on the condition.

Second, after finishing the training phase, there are twelve questions in the test phase.

Here are the following tasks in this phase.

• Experiment 1: Assign the likelihood for each price range (Low/Medium/High) of

the given house

• Experiment 2: In addition to the same tasks as in experiment 1, participants were

asked to explain their decision using free text. Participants in Experiment 1 were

not allowed to participate again in Experiment 2.

Example questions in Experiment 1 are shown in Figure B.4, B.5 and B.6. Experi-

ment 2 will use the same set of questions, with an addition of having a free text after the

likelihood slider to ask participants why they made such choices.

To compare between the three conditions (C1) Recommendation-driven, (C2) AI-explanation-

only and (C3) Hypothesis-driven:

• In Figure B.4, participants can see the AI prediction (i.e. low price in this case) and

the weight of evidence (the explanation) for that prediction.

• In Figure B.5, the AI prediction is hidden. Therefore, even though the participants

can see the explanation, they do not know which class (low/medium/high) the

evidence refers to.

• In Figure B.6, the house features selected are similar to the example question in Fig-

ure B.4 and B.5. I show participants the evidence for all hypotheses (low, medium

and high). I do not give them the AI prediction. Specifically, I have supportive evi-

dence in most features for hypothesis low. By contrast, strongly negative evidence

refutes hypothesis high. The correct answer here is low.
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Powered by Qualtrics A

In the following task prediction, you will see the features
(evidence) of a house, including:

1. Quality of Construction: 6 out of 10 (10 is the best score)
2. House Age: 44 years
3. Location: 2 out of 4 (4 is the best score)
4. Kitchen Quality: Not good
5. Fireplaces: Available
6. Central Air Conditioning: Available

A decision aid uses these features (also called evidence) and
gives a prediction whether this house will be in a price range of:
low, medium or high.

The decision aid also provides an explanation, which is presented
as weight of evidence for all features.
How to read the evidence? Looking at the above figure, we
have the weight of evidence (WoE) for each feature. Positive
weight of evidence (presented as blue colour) means the
feature's value speaks in favour of the hypothesis that the value
of the house is `Low'. Negative weight of evidence (presented as
red colour) means the feature's value speaks against the
hypothesis that the value of the house is `Low'. The weight of
evidence is also measured as whether they are significant or not
based on the horizontal axis.

There are three hypotheses for a house in this task: Low price,
Medium price and High price.
For example, in this figure, House Age, Location and Kitchen
Quality support the hypothesis 'Low'. Specifically, since the house
age is 44 years old and the kitchen quality is `not good`, this
implies that the house price should be low. However, their weight
of evidence are not significant as shown on the horizontal axis.
On the other hand, Quality of Construction, Fireplaces and Central
Air Conditioning refute the hypothesis 'Low', which means they
suggest this house might have a higher price.

You will be given information about some houses. You will
also be given the output of the decision aid's prediction
(low or medium or high price) along with its evidence. Your
task is to assign the likelihood for each price range of the
given house.
You can make use of the evidence provided and use these
information to make a final decision

whether the evidence supports or refutes your prediction
whether the weight of evidence is significant or not
whether the feature with significant weight of evidence
is important or not. In this task, Quality of Construction,
House Age and Location are more important than
Kitchen Quality, Fireplaces and Central Air Conditioning
because the first three features are not easy to be fixed.
However, because the decision aid can sometimes be
wrong about the evidence, you may want to rely on your
own intuition in some cases

You will be scored based on your answer. Your answer is
correct when you assign the highest likelihood to the
correct price range. A correct answer will give you 1 point.
The final compensation will be calculated based on your final
score: a score of 0 will receive a bonus of $0, and you will receive
the standard base rate of 4 GBP. You will receive a bonus of 2
GBP if you answer at least 9 out of 12 questions correctly.

Here we will show you three example questions and explain
their answers.
After you finish the task prediction, we will ask you to evaluate
your trust and satisfaction using sliders (track bars). You will not
be scored when evaluating your trust and satisfaction.
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(a) Introduction page

Powered by Qualtrics A

House features:

1. Quality of Construction: 5 out of 10 (10 is the best score)
2. House Age: 58 years
3. Location: 2 out of 4 (4 is the best score)
4. Kitchen Quality: Not good
5. Fireplaces: 2
6. Central Air Conditioning: Available

The decision aid predicts that this house has a medium price
range.
Using the below evidence of this prediction, assign the
likelihood for each option (Low, Medium, High) where 100 is
the most likely, 0 is the least likely. Please total the choices
to 100. You will not be able to continue unless you do so.

Answer: We know that the decision aid's prediction is medium.
Also, looking at the evidence provided for the medium price
range, the evidence is positive in all features, which show that
they support the hypothesis medium substantially. Therefore, we
can set medium with the highest likelihood and medium is the
correct answer.
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(b) An example question

Figure B.1: Training phase in (C1) Recommendation-driven
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Powered by Qualtrics A

In the following task prediction, you will see the features
(evidence) of a house, including:

1. Quality of Construction: 6 out of 10 (10 is the best score)
2. House Age: 44 years
3. Location: 2 out of 4 (4 is the best score)
4. Kitchen Quality: Not good
5. Fireplaces: Available
6. Central Air Conditioning: Available

A decision aid weights these features (also called evidence).
You should look at the evidence provided and whether the
evidence supports a particular hypothesis.

The decision aid provides weight of evidence for all features.
Although the decision aid has a prediction, to avoid biasing your
decision, we will not show you that prediction. Instead, we will
show you the evidence that the decision aid used to make that
prediction.
How to read the evidence? Looking at the above figure, we
have the weight of evidence (WoE) for each feature. Positive
weight of evidence (presented as blue colour) means the
feature's value speaks in favour of the decision aid's prediction.
Negative weight of evidence (presented as red colour) means
the feature's value speaks against the decision aid's prediction.
The weight of evidence is also measured as whether they are
significant or not based on the horizontal axis.

There are three hypotheses for a house in this task: Low price,
Medium price and High price.
For example, in this figure, House Age, Location and Kitchen
Quality support a hypothesis. However, their weight of evidence
are not significant as shown on the horizontal axis. On the other
hand, Quality of Construction, Fireplaces and Central Air
Conditioning are considered to work against the hypothesis.

You will be given information about some houses. You will
also be given a weighting of the evidence by the decision
aid. The evidence shows the decision aid's estimate of the
weight of features, so can be useful to help guide which
features you pay attention to. Based on the provided
evidence, your task is to assign the likelihood for each price
range of the given house.
You can make use of the evidence provided and use these
information to make a final decision

whether the evidence supports or refutes your prediction
whether the weight of evidence is significant or not
whether the feature with significant weight of evidence
is important or not. In this task, Quality of Construction,
House Age and Location are more important than
Kitchen Quality, Fireplaces and Central Air Conditioning
because the first three features are not easy to be fixed.
However, because the decision aid can sometimes be
wrong about the evidence, you may want to rely on your
own intuition in some cases

You will be scored based on your answer. Your answer is
correct when you assign the highest likelihood to the
correct price range. A correct answer will give you 1 point.
The final compensation will be calculated based on your final
score: a score of 0 will receive a bonus of $0, and you will receive
the standard base rate of 4 GBP. You will receive a bonus of 2
GBP if you answer at least 9 out of 12 questions correctly.

Here we will show you three example questions and explain
their answers.
After you finish the task prediction, we will ask you to evaluate
your trust and satisfaction using sliders (track bars). You will not
be scored when evaluating your trust and satisfaction.
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(a) Introduction page

Powered by Qualtrics A

House features:

1. Quality of Construction: 5 out of 10 (10 is the best score)
2. House Age: 58 years
3. Location: 2 out of 4 (4 is the best score)
4. Kitchen Quality: Not good
5. Fireplaces: 2
6. Central Air Conditioning: Available

Using the below evidence of a hidden decision aid's
prediction (low/medium/high), assign the likelihood for
each option (Low, Medium, High) where 100 is the most
likely, 0 is the least likely. Please total the choices to 100.
You will not be able to continue unless you do so.

Answer: We don't know about the decision aid's prediction, we
can only see its evidence. Looking at the evidence provided, the
evidence is positive in all features, which shows that they all
support this prediction. Especially, the quality of construction and
fireplaces significantly support this prediction. As in the house
features provided, the quality of construction is average and we
have 2 fireplaces. Therefore, we can argue that this prediction
cannot be high because of the quality of construction. Also, we
have a house age of 58 years, and the evidence of the hidden
prediction says that the house age doesn't significantly support
this prediction. So this prediction cannot be low because if it was
low, we could have a stronger evidence in house age and also
negative evidence in the number of fireplaces.

Therefore, we can set medium with the highest likelihood and
this is the decision aid's prediction and also the correct answer.
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(b) An example question

Figure B.2: Training phase in (C2) AI-explanation-only
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Powered by Qualtrics A

In the following task prediction, you will see the features
(evidence) of a house, including:

1. Quality of Construction: 6 out of 10 (10 is the best score)
2. House Age: 44 years
3. Location: 2 out of 4 (4 is the best score)
4. Kitchen Quality: Not good
5. Fireplaces: Available
6. Central Air Conditioning: Available

A decision aid uses these features (also called evidence) to
reason about the likelihood whether this house will be in a price
range of: low, medium or high. You should look at the evidence
provided and decide what should be the best price range for the
given house.

How to read the evidence? Looking at the above figure, we
have the weight of evidence (WoE) for each feature. Positive
weight of evidence (presented as blue colour) means the
feature's value speaks in favour of the hypothesis that the value
of the house is `Low'. Negative weight of evidence (presented as
red colour) means the feature's value speaks against the
hypothesis that the value of the house is `Low'. The weight of
evidence is also measured as whether they are significant or not
based on the horizontal axis.

There are three hypotheses for a house in this task: Low price,
Medium price and High price. You can use the dropdown list to
change the hypothesis and see its corresponding evidence.
For example, in this figure, when we choose hypothesis low,
house age, location and kitchen quality support this hypothesis.
Specifically, since the house age is 44 years old and the kitchen
quality is `not good`, this implies that the house price should be
low. However, their weight of evidence are not significant as
shown on the horizontal axis. On the other hand, Quality of
Construction, Fireplaces and Central Air Conditioning refute the
hypothesis 'Low', which means they suggest this house might
have a higher price based on these three features.

You will be given information about some houses. The
decision aid's prediction will not be given in this task. You
will be able to view the evidence for each hypothesis. your
task is to assign the likelihood for each price range of the
given house.
You can make use of the evidence provided and use these
information to make a final decision

whether the evidence supports or refutes your prediction
whether the weight of evidence is significant or not
whether the feature with significant weight of evidence
is important or not. In this task, Quality of Construction,
House Age and Location are more important than
Kitchen Quality, Fireplaces and Central Air Conditioning
because the first three features are not easy to be fixed.
However, because the decision aid can sometimes be
wrong about the evidence, you may want to rely on your
own intuition in some cases

You will be scored based on your answer. Your answer is
correct when you assign the highest likelihood to the
correct price range. A correct answer will give you 1 point.
The final compensation will be calculated based on your final
score: a score of 0 will receive a bonus of $0, and you will receive
the standard base rate of 4 GBP. You will receive a bonus of 2
GBP if you answer at least 9 out of 12 questions correctly.

Here we will show you three example questions and explain
their answers.
After you finish the task prediction, we will ask you to evaluate
your trust and satisfaction using sliders (track bars). You will not
be scored when evaluating your trust and satisfaction.
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(a) Introduction page

Powered by Qualtrics A

House features:

1. Quality of Construction: 5 out of 10 (10 is the best score)
2. House Age: 58 years
3. Location: 2 out of 4 (4 is the best score)
4. Kitchen Quality: Not good
5. Fireplaces: 2
6. Central Air Conditioning: Available

Using the evidence for each hypothesis
(low/medium/high), assign the likelihood for each option
(Low, Medium, High) where 100 is the most likely, 0 is the
least likely. Please total the choices to 100. You will not be
able to continue unless you do so. Please use the dropdown
list to see the evidence for all hypotheses.
Low

Answer: Looking at the evidence provided for three possible
hypothese (low/medium/high), the evidence is positive in all
features for the hypothesis medium.

Therefore, we can be confident when we set medium with the
highest likelihood and this is the correct answer.
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(b) An example question

Figure B.3: Training phase in (C3) Hypothesis-driven
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Powered by Qualtrics A

House features:

1. Quality of Construction: 5 out of 10 (10 is the best score)
2. House Age: 53 years
3. Location: 1 out of 4 (4 is the best score)
4. Kitchen Quality: Not good
5. Fireplaces: 0
6. Central Air Conditioning: Available

The decision aid predicts that this house has a low price range.
Using the below evidence of this prediction, assign the
likelihood for each option (Low, Medium, High) where 100 is
the most likely, 0 is the least likely. Please total the choices
to 100. You will not be able to continue unless you do so.

Low                   0

Medium                   0

High                   0

Total: 0

 
 0 11 22 33 44 56 67 78 89 100
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Figure B.4: A screenshot of a question in (C1) Recommendation-driven.

159



B.2 Human Experiment Hypothesis-Driven Decision Making Model

Powered by Qualtrics A

House features:

1. Quality of Construction: 5 out of 10 (10 is the best score)
2. House Age: 53 years
3. Location: 1 out of 4 (4 is the best score)
4. Kitchen Quality: Not good
5. Fireplaces: 0
6. Central Air Conditioning: Available

Using the below evidence of a hidden decision aid's
prediction (low/medium/high), assign the likelihood for
each option (Low, Medium, High) where 100 is the most
likely, 0 is the least likely. Please total the choices to 100.
You will not be able to continue unless you do so.

Low                   0

Medium                   0

High                   0

Total: 0

 
 0 11 22 33 44 56 67 78 89 100
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Figure B.5: A screenshot of a question in (C2) AI-explanation-only.
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Powered by Qualtrics A

House features:

1. Quality of Construction: 5 out of 10 (10 is the best score)
2. House Age: 53 years
3. Location: 1 out of 4 (4 is the best score)
4. Kitchen Quality: Not good
5. Fireplaces: 0
6. Central Air Conditioning: Available

Using the evidence for each hypothesis
(low/medium/high), assign the likelihood for each option
(Low, Medium, High) where 100 is the most likely, 0 is the
least likely. Please total the choices to 100. You will not be
able to continue unless you do so. Please use the dropdown
list to see the evidence for all hypotheses.
Low

Low                   0

Medium                   0

High                   0

Total: 0

 
 0 11 22 33 44 56 67 78 89 100
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Powered by Qualtrics A

House features:

1. Quality of Construction: 5 out of 10 (10 is the best score)
2. House Age: 53 years
3. Location: 1 out of 4 (4 is the best score)
4. Kitchen Quality: Not good
5. Fireplaces: 0
6. Central Air Conditioning: Available

Using the evidence for each hypothesis
(low/medium/high), assign the likelihood for each option
(Low, Medium, High) where 100 is the most likely, 0 is the
least likely. Please total the choices to 100. You will not be
able to continue unless you do so. Please use the dropdown
list to see the evidence for all hypotheses.
Medium

Low                   0

Medium                   0

High                   0

Total: 0

 
 0 11 22 33 44 56 67 78 89 100
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House features:

1. Quality of Construction: 5 out of 10 (10 is the best score)
2. House Age: 53 years
3. Location: 1 out of 4 (4 is the best score)
4. Kitchen Quality: Not good
5. Fireplaces: 0
6. Central Air Conditioning: Available

Using the evidence for each hypothesis
(low/medium/high), assign the likelihood for each option
(Low, Medium, High) where 100 is the most likely, 0 is the
least likely. Please total the choices to 100. You will not be
able to continue unless you do so. Please use the dropdown
list to see the evidence for all hypotheses.
High

Low                   0

Medium                   0

High                   0

Total: 0

 
 0 11 22 33 44 56 67 78 89 100
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Figure B.6: Screenshots of evidence provided for all three hypotheses in (C3) Hypothesis-
driven.
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Appendix C

Visual Evaluative AI

C.1 Human Experiment’s Protocol

I will provide the questions and tasks that I asked the participants in the human exper-

iment. The experiment consists of three phases: (1) a short interview about the partic-

ipant’s background, (2) diagnosis tasks, and (3) a semi-structured interview. The ques-

tions are as follows:

C.1.1 Phase 1’s Questions

1. (Role) What is your current role?

2. (Years of experience in the current role) How many years that you have been in this

role?

3. (Years of experience in skin cancer) What is your experience in diagnosing skin cancer?

(No experience, Beginner, Intermediate, Expert)

4. (AI expertise) How would you describe your experience in using AI tools, either in

your work or outside of work? (No experience, Beginner, Intermediate, Expert)

5. (DA tools used) Have you ever used a decision-support tool to support skin cancer

diagnosis? If yes, can you please describe your experience? What tools have you

used?
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C.1.2 Phase 2’s Questions

I show participants the two interfaces and ask them to complete the tasks. Instructions and tuto-

rials are provided as in Figures C.1,C.2,C.3.

Use via API · Built with Gradio

Overview
Thank you for participating in our user study. Before we begin the main tasks, we will go through a brief tutorial to familiarize you
with the web application and the tasks you will be performing. The aim of this study is to explore whether different decision-aids
can have different impacts on people's decision-making process. We have two decision-aids in supporting skin cancer diagnosis,
corresponding to two web interfaces (Recommendation-Driven and Hypothesis-Driven). In this study, you will be asked to
complete several tasks using two interfaces of our web application EvaSkan. These tasks include:

Using the information provided by the decision-aid, assign the likelihood for seven skin cancer diagnoses, including: (1) actinic
keratoses and intraepithelial carcinomas (AKIECs); (2) basal cell carcinomas (BCCs); (3) melanomas (MELs); (4) melanocytic nevi
(NVs); (5) benign keratinocytic lesions (BKLs); (6) dermatofibromas (DFs) and (7) vascular lesions (VASCs). The likelihood for each
diagnosis ranges from 0 (least likely) to 100 (most likely). Using each web interface, you will evaluate the skin cancer diagnoses for
eight dermatoscopic images. Therefore, there are a total of sixteen dermatoscopic images in this task, corresponding to two web
interfaces;

After finishing the diagnoses for sixteen dermatoscopic images, you will compare and evaluate your preferences between the
two interfaces by answering a few questions in a survey;

Finally, we will conduct an interview to ask you about your experience of using those two web interfaces.

I understand. Let's get started with the first interface!

Figure C.1: Overview introduction of the human experiment

The Qualtrics survey given to participants is shown as in Figure C.4.

C.1.3 Phase 3’s Questions

In this phase, I conduct a semi-structured interview by asking them to reflect on how they made

the diagnoses in Phase 2 using a think-aloud protocol and open questions about the design of my

decision aids.

1. How accurate and reliable do you think this decision support is, by comparing

between the recommendation-driven and hypothesis-driven?

2. What did not work well when you used this decision support? Is there anything

that you are concerned about?

3. What do you think about the quality of the provided evidence? Did you look at the

segmentations or the weight of evidence when making the decision?
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4. Are there any other evidence that you used to make the decision? Specifically, evi-

dence that you found yourself based on the original image.

5. What are the advantages and disadvantages of the recommendation-driven and the

hypothesis-driven interface?

6. What changes would you propose for the DA to help you make better decisions?

C.2 Web Interfaces

I show example screenshots of the two interfaces used in the human experiment. The

recommendation-driven interface is shown in Figure C.5, and the hypothesis-driven in-

terface is shown in Figure C.6.
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Use via API · Built with Gradio

Understanding the Web Interface of
Recommendation-Driven Decision-
Aid
This tutorial will guide you through the key components of the
interface.
1. Image index: The index of the current image, valued from 0 to
8;

2. Dermatoscopic image: The dermatoscopic image that we are
evaluating;

3. Decision aid's recommendation: The recommendation for
the diagnosis of the current image, given by the decision-aid.
The recommendation is one of seven possible diagnoses (AKIEC,
BCC, MEL, NV, BKL, DF, VASC);

4. Evidence for: The evidence that support the decision-aid's
recommendation;

5. Evidence against: The evidence that refute the decision-aid's
recommendation;

6. Response - Assigning the likelihood: Use the seven sliders to
answer the task's question. You will need to assign the
likelihood for seven possible diagnoses and ensure that the total
likelihood is 100.

How to Read the Evidence
The evidence comprise of two components, including (A) weight
of evidence (on the left side) and (B) image segmentations (on
the right side), explained as follows.

(A) weight of evidence: We have the weight of evidence
(WoE) for each feature being presented as horizontal bar charts.
A positive weight of evidence (blue colour) indicates that the
feature's value supports the decision-aid's recommendation
according to the AI model used in the decision-aid. A negative

weight of evidence (red colour) indicates that the feature's value
refutes the decision-aid's recommendation according to the AI
model used in the decision-aid. The weight of evidence is also
measured as how much each feature contributes to the
recommendation based on the horizontal axis. Note that this
decision-aid can sometimes find wrong evidence or give it the
wrong weight.

(B) image evidence: Each feature is represented as evidence
on the test image that highlight areas on the skin. We also
provide five other example images in the training set with
evidence that present the similar feature. Based on these
evidence, you can identify the dermatoscopic feature being
represented.

I understand

Figure C.2: Tutorial of the recommendation-driven interface
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Use via API · Built with Gradio

Understanding the Web Interface of
Hypothesis-Driven Decision-Aid
This tutorial will guide you through the key components of the
interface.
1. Image index: The index of the current image, valued from 0 to
8;

2. Dermatoscopic image: The dermatoscopic image that we are
evaluating;

3. Your hypothesis: Select one out of seven possible diagnoses
for the current image. When you select a hypothesis, the
evidence will be shown correspondingly. You do not need to
view all hypotheses;

4. Evidence for: The evidence that support the selected
hypothesis;

5. Evidence against: The evidence that refute the selected
hypothesis;

6. Response: Assigning the likelihood: Use the seven sliders to
answer the task's question. You will need to assign the
likelihood for seven possible diagnoses and ensure that the total
likelihood is 100.

How to Read the Evidence
The evidence comprise of two components, including (A) weight
of evidence (on the left side) and (B) image segmentations (on
the right side), explained as follows.

(A) weight of evidence: We have the weight of evidence
(WoE) for each feature being presented as horizontal bar charts.
A positive weight of evidence (blue colour) indicates that the
feature's value supports the selected hypothesis according to
the AI model used in the decision-aid. A negative weight of

evidence (red colour) indicates that the feature's value refutes
the selected hypothesis according to the AI model used in the
decision-aid. The weight of evidence is also measured as how
much each feature contributes to the hypothesis based on the
horizontal axis. Note that this decision-aid can sometimes find
wrong evidence or give it the wrong weight.

(B) image evidence: Each feature is represented as evidence
on the test image that highlight areas on the skin. We also
provide five other example images in the training set with
evidence that present the similar feature. Based on these
evidence, you can identify the dermatoscopic feature being
represented.

I understand

Figure C.3: Tutorial of the hypothesis-driven interface
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Powered by Qualtrics A

In control: Scale these conditions based on how much you are in
control of the decision making process.

Decision-making: Scale these conditions based on how helpful it
is to you to make the diagnosis.

Ease of use: Scale these conditions based on how easy it is to
use.

Error detection: Scale these conditions based on how easy it is to
spot mistakes in the decision-aid.

Recommendation-driven equally likely Hypothesis-driven

Recommendation-driven equally likely Hypothesis-driven

Recommendation-driven equally likely Hypothesis-driven

Recommendation-driven equally likely Hypothesis-driven

Figure C.4: Qualtrics survey for the human experiment - Bipolar scale questions
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Visual Evaluative AI C.2 Web Interfaces

EvaSkan - Practice Task - Recommendation-Driven
We will give you an example of the task. Please use the information provided to you and assign the likelihood for the seven possible diagnoses.

0 Melanoma (MEL)
Image index Dermatoscopic image Decision-aid's recommendation

Evidence For MEL

Evidence Against MEL

Figure C.5: The recommendation-driven interface
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EvaSkan - Practice Task - Hypothesis-Driven
We will give you an example of the task. Please use the information provided to you and assign the likelihood for the seven possible diagnoses.

0 Please select a maximum of two hypotheses at the same time

Actinic keratoses/intraepithelial carcinoma (AKIEC)

Basal cell carcinoma (BCC)

Benign keratosis-like lesions (BKL)

Dermatofibroma (DF) Melanoma (MEL)

Melanocytic nevi (NV)

Vascular lesions (VASC)

Assign the likelihood for each option, where 100 is the most likely, 0 is the least likely. Please total the choices to 100.

Current total likelihood: 0
ERROR: Please total the choices to 100. You will not be able to continue unless you do so.

0

0

0

0

0

Image index Dermatoscopic image

Evidence For MEL Evidence For VASC

Evidence Against MEL Evidence Against VASC

Your hypothesis

Actinic keratoses/intraepithelial carcinoma (AKIEC)

Basal cell carcinoma (BCC)

Benign keratosis-like lesions (BKL)

Dermatofibroma (DF)

Melanoma (MEL)

Figure C.6: The hypothesis-driven interface
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explanations of agent behavior: Integrating strategy summaries with saliency

maps. Artificial Intelligence, 301, 2021.

[85] Aya Hussein, Sondoss Elsawah, and Hussein A Abbass. Trust Mediating

Reliability–Reliance Relationship in Supervisory Control of Human–Swarm Inter-

actions. Human Factors, 62(8):1237–1248, 2020.

[86] Maia Jacobs, Melanie F. Pradier, Thomas H. McCoy, Roy H. Perlis, Finale Doshi-

Velez, and Krzysztof Z. Gajos. How machine-learning recommendations influence

clinician treatment selections: the example of antidepressant selection. Translational

Psychiatry, 11(1), 2021.
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